Dergi makalesi Açık Erişim

Controlled release of anticancer drug Paclitaxel using nano-structured amphiphilic star-hyperbranched block copolymers

   Geyik, Caner; Ciftci, Mustafa; Demir, Bilal; Guler, Bahar; Ozkaya, A. Burak; Gumus, Z. Pinar; Barlas, F. Baris; Demirkol, Dilek Odaci; Coskunol, Hakan; Timur, Suna; Yagci, Yusuf

In the present study, two amphiphilic star-hyperbranched copolymers based on poly(methyl methacrylate)-b-poly(2-hydroxyethyl methacrylate) (PMMA-b-PHEMA), with different hydrophilic PHEMA segment contents (PMMA-b-PHEMA-1, and PMMA-b-PHEMA-2), were synthesized, and their drug loading and release profiles were examined using Paclitaxel (PTX) as a model drug. The drug loading capacities and encapsulation efficiencies were found to be similar in both polymers. The encapsulation efficiencies were found to be prominent at 98% and 98.5% for PMMA-b-PHEMA-1 and PMMA-b-PHEMA-2, respectively. On the other hand, the drug release behaviors varied in favor of the block copolymer comprising shorter PHEMA chains (PMMA-b-PHEMA-1). Additionally, to assess the biological effects of PTX-loaded polymers, human non-small cell lung carcinoma (A549) cells were used. Cell viability and cell cycle analysis showed that both polymers were non-toxic to cells. The cytotoxic effect of PTX-loaded PMMA-b-PHEMA-1 on A 549 cells was greater (66.49% cell viability at 5.0 ng mL(-1) PTX) than that of PMMA-b-PHEMA-2 (72.47% cell viability at 5.0 ng mL(-1) PTX), consistent with the drug release experiments.

Dosyalar (294 Bytes)
Dosya adı Boyutu
bib-bc6347b6-0bff-42f6-8c47-aa7d617052a9.txt
md5:36bbad76ac02b26684746b912791b6db
294 Bytes İndir
27
7
görüntülenme
indirilme
Görüntülenme 27
İndirme 7
Veri hacmi 2.1 kB
Tekil görüntülenme 27
Tekil indirme 7

Alıntı yap