Dergi makalesi Açık Erişim
Karatum, Onuralp; Aria, Mohammad Mohammadi; Eren, Guncem Ozgun; Yildiz, Erdost; Melikov, Rustamzhon; Srivastava, Shashi Bhushan; Surme, Saliha; Dogru, Itir Bakis; Jalali, Houman Bahmani; Ulgut, Burak; Sahin, Afsun; Kavakli, Ibrahim Halil; Nizamoglu, Sedat
{
"@context": "https://schema.org/",
"@id": 239512,
"@type": "ScholarlyArticle",
"creator": [
{
"@type": "Person",
"affiliation": "Koc Univ, Dept Elect & Elect Engn, Istanbul, Turkey",
"name": "Karatum, Onuralp"
},
{
"@type": "Person",
"affiliation": "Koc Univ, Dept Biomed Sci & Engn, Istanbul, Turkey",
"name": "Aria, Mohammad Mohammadi"
},
{
"@type": "Person",
"affiliation": "Koc Univ, Dept Biomed Sci & Engn, Istanbul, Turkey",
"name": "Eren, Guncem Ozgun"
},
{
"@type": "Person",
"affiliation": "Koc Univ, Res Ctr Translat Med, Istanbul, Turkey",
"name": "Yildiz, Erdost"
},
{
"@type": "Person",
"affiliation": "Koc Univ, Dept Elect & Elect Engn, Istanbul, Turkey",
"name": "Melikov, Rustamzhon"
},
{
"@type": "Person",
"affiliation": "Koc Univ, Dept Elect & Elect Engn, Istanbul, Turkey",
"name": "Srivastava, Shashi Bhushan"
},
{
"@type": "Person",
"affiliation": "Koc Univ, Dept Mol Biol & Genet, Istanbul, Turkey",
"name": "Surme, Saliha"
},
{
"@type": "Person",
"affiliation": "Koc Univ, Dept Biomed Sci & Engn, Istanbul, Turkey",
"name": "Dogru, Itir Bakis"
},
{
"@type": "Person",
"affiliation": "Koc Univ, Dept Biomed Sci & Engn, Istanbul, Turkey",
"name": "Jalali, Houman Bahmani"
},
{
"@type": "Person",
"affiliation": "Brikent Univ, Dept Chem, Ankara, Turkey",
"name": "Ulgut, Burak"
},
{
"@type": "Person",
"name": "Sahin, Afsun"
},
{
"@type": "Person",
"affiliation": "Koc Univ, Dept Mol Biol & Genet, Istanbul, Turkey",
"name": "Kavakli, Ibrahim Halil"
},
{
"@type": "Person",
"name": "Nizamoglu, Sedat"
}
],
"datePublished": "2021-01-01",
"description": "Light-activated biointerfaces provide a non-genetic route for effective control of neural activity. InP quantum dots (QDs) have a high potential for such biomedical applications due to their uniquely tunable electronic properties, photostability, toxic-heavy-metal-free content, heterostructuring, and solution-processing ability. However, the effect of QD nanostructure and biointerface architecture on the photoelectrical cellular interfacing remained unexplored. Here, we unravel the control of the photoelectrical response of InP QD-based biointerfaces via nanoengineering from QD to device-level. At QD level, thin ZnS shell growth (similar to 0.65 nm) enhances the current level of biointerfaces over an order of magnitude with respect to only InP core QDs. At device-level, band alignment engineering allows for the bidirectional photoelectrochemical current generation, which enables light-induced temporally precise and rapidly reversible action potential generation and hyperpolarization on primary hippocampal neurons. Our findings show that nanoengineering QD-based biointerfaces hold great promise for next-generation neurostimulation devices.",
"headline": "Nanoengineering InP Quantum Dot-Based Photoactive Biointerfaces for Optical Control of Neurons",
"identifier": 239512,
"image": "https://aperta.ulakbim.gov.tr/static/img/logo/aperta_logo_with_icon.svg",
"license": "http://www.opendefinition.org/licenses/cc-by",
"name": "Nanoengineering InP Quantum Dot-Based Photoactive Biointerfaces for Optical Control of Neurons",
"url": "https://aperta.ulakbim.gov.tr/record/239512"
}
| Görüntülenme | 204 |
| İndirme | 31 |
| Veri hacmi | 9.2 kB |
| Tekil görüntülenme | 167 |
| Tekil indirme | 31 |