Dergi makalesi Açık Erişim
Karatum, Onuralp; Aria, Mohammad Mohammadi; Eren, Guncem Ozgun; Yildiz, Erdost; Melikov, Rustamzhon; Srivastava, Shashi Bhushan; Surme, Saliha; Dogru, Itir Bakis; Jalali, Houman Bahmani; Ulgut, Burak; Sahin, Afsun; Kavakli, Ibrahim Halil; Nizamoglu, Sedat
{ "@context": "https://schema.org/", "@id": 239512, "@type": "ScholarlyArticle", "creator": [ { "@type": "Person", "affiliation": "Koc Univ, Dept Elect & Elect Engn, Istanbul, Turkey", "name": "Karatum, Onuralp" }, { "@type": "Person", "affiliation": "Koc Univ, Dept Biomed Sci & Engn, Istanbul, Turkey", "name": "Aria, Mohammad Mohammadi" }, { "@type": "Person", "affiliation": "Koc Univ, Dept Biomed Sci & Engn, Istanbul, Turkey", "name": "Eren, Guncem Ozgun" }, { "@type": "Person", "affiliation": "Koc Univ, Res Ctr Translat Med, Istanbul, Turkey", "name": "Yildiz, Erdost" }, { "@type": "Person", "affiliation": "Koc Univ, Dept Elect & Elect Engn, Istanbul, Turkey", "name": "Melikov, Rustamzhon" }, { "@type": "Person", "affiliation": "Koc Univ, Dept Elect & Elect Engn, Istanbul, Turkey", "name": "Srivastava, Shashi Bhushan" }, { "@type": "Person", "affiliation": "Koc Univ, Dept Mol Biol & Genet, Istanbul, Turkey", "name": "Surme, Saliha" }, { "@type": "Person", "affiliation": "Koc Univ, Dept Biomed Sci & Engn, Istanbul, Turkey", "name": "Dogru, Itir Bakis" }, { "@type": "Person", "affiliation": "Koc Univ, Dept Biomed Sci & Engn, Istanbul, Turkey", "name": "Jalali, Houman Bahmani" }, { "@type": "Person", "affiliation": "Brikent Univ, Dept Chem, Ankara, Turkey", "name": "Ulgut, Burak" }, { "@type": "Person", "name": "Sahin, Afsun" }, { "@type": "Person", "affiliation": "Koc Univ, Dept Mol Biol & Genet, Istanbul, Turkey", "name": "Kavakli, Ibrahim Halil" }, { "@type": "Person", "name": "Nizamoglu, Sedat" } ], "datePublished": "2021-01-01", "description": "Light-activated biointerfaces provide a non-genetic route for effective control of neural activity. InP quantum dots (QDs) have a high potential for such biomedical applications due to their uniquely tunable electronic properties, photostability, toxic-heavy-metal-free content, heterostructuring, and solution-processing ability. However, the effect of QD nanostructure and biointerface architecture on the photoelectrical cellular interfacing remained unexplored. Here, we unravel the control of the photoelectrical response of InP QD-based biointerfaces via nanoengineering from QD to device-level. At QD level, thin ZnS shell growth (similar to 0.65 nm) enhances the current level of biointerfaces over an order of magnitude with respect to only InP core QDs. At device-level, band alignment engineering allows for the bidirectional photoelectrochemical current generation, which enables light-induced temporally precise and rapidly reversible action potential generation and hyperpolarization on primary hippocampal neurons. Our findings show that nanoengineering QD-based biointerfaces hold great promise for next-generation neurostimulation devices.", "headline": "Nanoengineering InP Quantum Dot-Based Photoactive Biointerfaces for Optical Control of Neurons", "identifier": 239512, "image": "https://aperta.ulakbim.gov.tr/static/img/logo/aperta_logo_with_icon.svg", "license": "http://www.opendefinition.org/licenses/cc-by", "name": "Nanoengineering InP Quantum Dot-Based Photoactive Biointerfaces for Optical Control of Neurons", "url": "https://aperta.ulakbim.gov.tr/record/239512" }
Görüntülenme | 153 |
İndirme | 22 |
Veri hacmi | 6.6 kB |
Tekil görüntülenme | 127 |
Tekil indirme | 22 |