Dergi makalesi Açık Erişim

Microbial Inactivation by Non-equilibrium Short-Pulsed Atmospheric Pressure Dielectric Barrier Discharge (Cold Plasma): Numerical and Experimental Studies

   Arserim, Ender H.; Salvi, Deepti; Fridman, Gregory; Schaffner, Donald W.; Karwe, Mukund V.

Microbial inactivation efficacy of plasma generated by a custom-made floating electrode dielectric barrier discharge (FE-DBD) or cold plasma at three different frequencies (1 kHz, 2 kHz, and 3.5 kHz) was experimentally evaluated for its inactivation of the pathogen surrogateEnterobacter aerogeneson a glass surface to obtain inactivation kinetics. COMSOL Multiphysics (R) was used to numerically simulate the amount and the distribution of reactive species within an FE-DBD system. Microbial inactivation kinetics was predicted using species concentrations and microbial inactivation rates from the literature and compared with experimental data. The results showed that the FE-DBD plasma treatment achieved a microbial reduction of 4.3 +/- 0.5 log CFU/surface at 3.5 kHz, 5.1 +/- 0.09 log CFU/surface at 2 kHz, and 5.1 +/- 0.05 log CFU/surface at 1 kHz in 2 min, 3 min, and 6 min, respectively. The predicted values were 4.02 log CFU/surface, 4.10 log CFU/surface, and 4.56 log CFU/surface at 1 kHz, 2 kHz, and 3.5 kHz, respectively. A maximum 1 log difference was observed between numerical predictions and the experimental results. The difference might be due to synergistic interactions between plasma species, UV component of FE-DBD plasma, and/or the electrical field effects, which could not be included in the numerical simulation.

Dosyalar (252 Bytes)
Dosya adı Boyutu
bib-3505ba42-49ad-4313-94b7-19c4c72b4525.txt
md5:2243d2f033b650ded6711ff939caf07e
252 Bytes İndir
32
7
görüntülenme
indirilme
Görüntülenme 32
İndirme 7
Veri hacmi 1.8 kB
Tekil görüntülenme 31
Tekil indirme 7

Alıntı yap