Konferans bildirisi Açık Erişim

Real-time Buried Object Detection Using LMMSE Estimation

Yoldemir, Ahmet Burak; Sezgin, Mehmet


Dublin Core

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Yoldemir, Ahmet Burak</dc:creator>
  <dc:creator>Sezgin, Mehmet</dc:creator>
  <dc:date>2010-01-01</dc:date>
  <dc:description>We present the application of linear minimum mean square error (LMMSE) estimation to GPR data for achieving buried object detection. Without employing any empirical assumptions, nonstationary form of Wiener-Hopf equations is applied to GPR signals to estimate the next sample in normal conditions. A large deviation from this estimation indicates the presence of a buried object. The technique is causal, which allows it to be used in real-time applications. Our approach is theoretically optimal in linear minimum mean square error sense, and it is also validated with the tests that are carried out on a comprehensive data set of GPR signals.</dc:description>
  <dc:identifier>https://aperta.ulakbim.gov.trrecord/92835</dc:identifier>
  <dc:identifier>oai:zenodo.org:92835</dc:identifier>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights>
  <dc:title>Real-time Buried Object Detection Using LMMSE Estimation</dc:title>
  <dc:type>info:eu-repo/semantics/conferencePaper</dc:type>
  <dc:type>publication-conferencepaper</dc:type>
</oai_dc:dc>
21
6
görüntülenme
indirilme
Görüntülenme 21
İndirme 6
Veri hacmi 726 Bytes
Tekil görüntülenme 20
Tekil indirme 6

Alıntı yap