Konferans bildirisi Açık Erişim

Real-time Buried Object Detection Using LMMSE Estimation

Yoldemir, Ahmet Burak; Sezgin, Mehmet


JSON

{
  "conceptdoi": "10.81043/aperta.92834", 
  "conceptrecid": "92834", 
  "created": "2021-03-16T12:40:06.365234+00:00", 
  "doi": "10.81043/aperta.92835", 
  "files": [
    {
      "bucket": "0e870bf9-a7af-4e49-8833-5f0c4a79cf3e", 
      "checksum": "md5:00f011e7d944f6d23a06008175d77227", 
      "key": "bib-4f0dc742-884b-402d-84c8-af2db2cd81f8.txt", 
      "links": {
        "self": "https://aperta.ulakbim.gov.tr/api/files/0e870bf9-a7af-4e49-8833-5f0c4a79cf3e/bib-4f0dc742-884b-402d-84c8-af2db2cd81f8.txt"
      }, 
      "size": 121, 
      "type": "txt"
    }
  ], 
  "id": 92835, 
  "links": {
    "badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.81043/aperta.92835.svg", 
    "bucket": "https://aperta.ulakbim.gov.tr/api/files/0e870bf9-a7af-4e49-8833-5f0c4a79cf3e", 
    "conceptbadge": "https://aperta.ulakbim.gov.tr/badge/doi/10.81043/aperta.92834.svg", 
    "conceptdoi": "https://doi.org/10.81043/aperta.92834", 
    "doi": "https://doi.org/10.81043/aperta.92835", 
    "html": "https://aperta.ulakbim.gov.tr/record/92835", 
    "latest": "https://aperta.ulakbim.gov.tr/api/records/92835", 
    "latest_html": "https://aperta.ulakbim.gov.tr/record/92835"
  }, 
  "metadata": {
    "access_right": "open", 
    "access_right_category": "success", 
    "communities": [
      {
        "id": "tubitak-adresli-yayinlar"
      }
    ], 
    "creators": [
      {
        "affiliation": "TUBITAK UEKAE, Gebze, Kocaeli, Turkey", 
        "name": "Yoldemir, Ahmet Burak"
      }, 
      {
        "affiliation": "TUBITAK UEKAE, Gebze, Kocaeli, Turkey", 
        "name": "Sezgin, Mehmet"
      }
    ], 
    "description": "We present the application of linear minimum mean square error (LMMSE) estimation to GPR data for achieving buried object detection. Without employing any empirical assumptions, nonstationary form of Wiener-Hopf equations is applied to GPR signals to estimate the next sample in normal conditions. A large deviation from this estimation indicates the presence of a buried object. The technique is causal, which allows it to be used in real-time applications. Our approach is theoretically optimal in linear minimum mean square error sense, and it is also validated with the tests that are carried out on a comprehensive data set of GPR signals.", 
    "doi": "10.81043/aperta.92835", 
    "has_grant": false, 
    "license": {
      "id": "cc-by"
    }, 
    "meeting": {
      "title": "7TH EUROPEAN RADAR CONFERENCE"
    }, 
    "publication_date": "2010-01-01", 
    "related_identifiers": [
      {
        "identifier": "10.81043/aperta.92834", 
        "relation": "isVersionOf", 
        "scheme": "doi"
      }
    ], 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "92835"
          }, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "92834"
          }
        }
      ]
    }, 
    "resource_type": {
      "subtype": "conferencepaper", 
      "title": "Konferans bildirisi", 
      "type": "publication"
    }, 
    "title": "Real-time Buried Object Detection Using LMMSE Estimation"
  }, 
  "owners": [
    1
  ], 
  "revision": 1, 
  "stats": {
    "downloads": 6.0, 
    "unique_downloads": 6.0, 
    "unique_views": 20.0, 
    "version_downloads": 6.0, 
    "version_unique_downloads": 6.0, 
    "version_unique_views": 20.0, 
    "version_views": 21.0, 
    "version_volume": 726.0, 
    "views": 21.0, 
    "volume": 726.0
  }, 
  "updated": "2021-03-16T12:40:06.424272+00:00"
}
21
6
görüntülenme
indirilme
Görüntülenme 21
İndirme 6
Veri hacmi 726 Bytes
Tekil görüntülenme 20
Tekil indirme 6

Alıntı yap