Konferans bildirisi Açık Erişim
Yoldemir, Ahmet Burak; Sezgin, Mehmet
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/92835</identifier>
<creators>
<creator>
<creatorName>Yoldemir, Ahmet Burak</creatorName>
<givenName>Ahmet Burak</givenName>
<familyName>Yoldemir</familyName>
<affiliation>TUBITAK UEKAE, Gebze, Kocaeli, Turkey</affiliation>
</creator>
<creator>
<creatorName>Sezgin, Mehmet</creatorName>
<givenName>Mehmet</givenName>
<familyName>Sezgin</familyName>
<affiliation>TUBITAK UEKAE, Gebze, Kocaeli, Turkey</affiliation>
</creator>
</creators>
<titles>
<title>Real-Time Buried Object Detection Using Lmmse Estimation</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2010</publicationYear>
<dates>
<date dateType="Issued">2010-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/92835</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.81043/aperta.92834</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.81043/aperta.92835</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">We present the application of linear minimum mean square error (LMMSE) estimation to GPR data for achieving buried object detection. Without employing any empirical assumptions, nonstationary form of Wiener-Hopf equations is applied to GPR signals to estimate the next sample in normal conditions. A large deviation from this estimation indicates the presence of a buried object. The technique is causal, which allows it to be used in real-time applications. Our approach is theoretically optimal in linear minimum mean square error sense, and it is also validated with the tests that are carried out on a comprehensive data set of GPR signals.</description>
</descriptions>
</resource>
| Görüntülenme | 29 |
| İndirme | 6 |
| Veri hacmi | 726 Bytes |
| Tekil görüntülenme | 26 |
| Tekil indirme | 6 |