Konferans bildirisi Açık Erişim
Yoldemir, Ahmet Burak; Sezgin, Mehmet
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/92835</identifier> <creators> <creator> <creatorName>Yoldemir, Ahmet Burak</creatorName> <givenName>Ahmet Burak</givenName> <familyName>Yoldemir</familyName> <affiliation>TUBITAK UEKAE, Gebze, Kocaeli, Turkey</affiliation> </creator> <creator> <creatorName>Sezgin, Mehmet</creatorName> <givenName>Mehmet</givenName> <familyName>Sezgin</familyName> <affiliation>TUBITAK UEKAE, Gebze, Kocaeli, Turkey</affiliation> </creator> </creators> <titles> <title>Real-Time Buried Object Detection Using Lmmse Estimation</title> </titles> <publisher>Aperta</publisher> <publicationYear>2010</publicationYear> <dates> <date dateType="Issued">2010-01-01</date> </dates> <resourceType resourceTypeGeneral="Text">Conference paper</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/92835</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.81043/aperta.92834</relatedIdentifier> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.81043/aperta.92835</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">We present the application of linear minimum mean square error (LMMSE) estimation to GPR data for achieving buried object detection. Without employing any empirical assumptions, nonstationary form of Wiener-Hopf equations is applied to GPR signals to estimate the next sample in normal conditions. A large deviation from this estimation indicates the presence of a buried object. The technique is causal, which allows it to be used in real-time applications. Our approach is theoretically optimal in linear minimum mean square error sense, and it is also validated with the tests that are carried out on a comprehensive data set of GPR signals.</description> </descriptions> </resource>
Görüntülenme | 21 |
İndirme | 6 |
Veri hacmi | 726 Bytes |
Tekil görüntülenme | 20 |
Tekil indirme | 6 |