Konferans bildirisi Açık Erişim

Real-time Buried Object Detection Using LMMSE Estimation

Yoldemir, Ahmet Burak; Sezgin, Mehmet


JSON-LD (schema.org)

{
  "@context": "https://schema.org/", 
  "@id": 92835, 
  "@type": "ScholarlyArticle", 
  "creator": [
    {
      "@type": "Person", 
      "affiliation": "TUBITAK UEKAE, Gebze, Kocaeli, Turkey", 
      "name": "Yoldemir, Ahmet Burak"
    }, 
    {
      "@type": "Person", 
      "affiliation": "TUBITAK UEKAE, Gebze, Kocaeli, Turkey", 
      "name": "Sezgin, Mehmet"
    }
  ], 
  "datePublished": "2010-01-01", 
  "description": "We present the application of linear minimum mean square error (LMMSE) estimation to GPR data for achieving buried object detection. Without employing any empirical assumptions, nonstationary form of Wiener-Hopf equations is applied to GPR signals to estimate the next sample in normal conditions. A large deviation from this estimation indicates the presence of a buried object. The technique is causal, which allows it to be used in real-time applications. Our approach is theoretically optimal in linear minimum mean square error sense, and it is also validated with the tests that are carried out on a comprehensive data set of GPR signals.", 
  "headline": "Real-time Buried Object Detection Using LMMSE Estimation", 
  "identifier": 92835, 
  "image": "https://aperta.ulakbim.gov.tr/static/img/logo/aperta_logo_with_icon.svg", 
  "license": "http://www.opendefinition.org/licenses/cc-by", 
  "name": "Real-time Buried Object Detection Using LMMSE Estimation", 
  "url": "https://aperta.ulakbim.gov.tr/record/92835"
}
21
6
görüntülenme
indirilme
Görüntülenme 21
İndirme 6
Veri hacmi 726 Bytes
Tekil görüntülenme 20
Tekil indirme 6

Alıntı yap