Dergi makalesi Açık Erişim
Acik, O.; Ertem, U.; Onder, M.; Vercin, Abdullah
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2010-01-01</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">Ankara Univ, Fac Sci, Dept Phys, TR-06100 Tandogan, Turkey</subfield> <subfield code="a">Acik, O.</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield> <subfield code="a">Creative Commons Attribution</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Ankara Univ, Fac Sci, Dept Phys, TR-06100 Tandogan, Turkey</subfield> <subfield code="a">Ertem, U.</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Hacettepe Univ, Dept Engn Phys, TR-06532 Beytepe, Turkey</subfield> <subfield code="a">Onder, M.</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Ankara Univ, Fac Sci, Dept Phys, TR-06100 Tandogan, Turkey</subfield> <subfield code="a">Vercin, Abdullah</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="o">oai:zenodo.org:26643</subfield> <subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a">It has been shown that for each Killing-Yano (KY)-form accepted by an n-dimensional (pseudo)Riemannian manifold of arbitrary signature, two different gravitational currents can be defined. Conservation of the currents are explicitly proved by showing co-exactness of the one and co-closedness of the other. Some general geometrical facts implied by these conservation laws are also elucidated. In particular, the conservation of the one-form currents implies that the scalar curvature of the manifold is a flow invariant for all of its Killing vector fields. It also directly follows that, while all KY-forms and their Hodge duals on a constant curvature manifold are the eigenforms of the Laplace-Beltrami operator, for an Einstein manifold this is certain only for KY 1-forms, (n - 1)-forms and their Hodge duals.</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.1007/s10714-010-1075-4</subfield> <subfield code="2">doi</subfield> </datafield> <controlfield tag="005">20210315121058.0</controlfield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Basic gravitational currents and Killing-Yano forms</subfield> </datafield> <datafield tag="909" ind1="C" ind2="4"> <subfield code="n">11</subfield> <subfield code="v">42</subfield> <subfield code="c">2543-2559</subfield> <subfield code="p">GENERAL RELATIVITY AND GRAVITATION</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="2">opendefinition.org</subfield> <subfield code="a">cc-by</subfield> </datafield> <controlfield tag="001">26643</controlfield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="b">article</subfield> <subfield code="a">publication</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="u">https://aperta.ulakbim.gov.trrecord/26643/files/bib-9148b619-6a4e-413b-a2c8-62c7d73916c2.txt</subfield> <subfield code="z">md5:fc4a9217bde3142aa903c4d816a3cf64</subfield> <subfield code="s">159</subfield> </datafield> </record>
Görüntülenme | 64 |
İndirme | 12 |
Veri hacmi | 1.9 kB |
Tekil görüntülenme | 58 |
Tekil indirme | 12 |