Dergi makalesi Açık Erişim

Basic gravitational currents and Killing-Yano forms

Acik, O.; Ertem, U.; Onder, M.; Vercin, Abdullah


Citation Style Language JSON

{
  "DOI": "10.1007/s10714-010-1075-4", 
  "abstract": "It has been shown that for each Killing-Yano (KY)-form accepted by an n-dimensional (pseudo)Riemannian manifold of arbitrary signature, two different gravitational currents can be defined. Conservation of the currents are explicitly proved by showing co-exactness of the one and co-closedness of the other. Some general geometrical facts implied by these conservation laws are also elucidated. In particular, the conservation of the one-form currents implies that the scalar curvature of the manifold is a flow invariant for all of its Killing vector fields. It also directly follows that, while all KY-forms and their Hodge duals on a constant curvature manifold are the eigenforms of the Laplace-Beltrami operator, for an Einstein manifold this is certain only for KY 1-forms, (n - 1)-forms and their Hodge duals.", 
  "author": [
    {
      "family": "Acik", 
      "given": " O."
    }, 
    {
      "family": "Ertem", 
      "given": " U."
    }, 
    {
      "family": "Onder", 
      "given": " M."
    }, 
    {
      "family": "Vercin", 
      "given": " Abdullah"
    }
  ], 
  "container_title": "GENERAL RELATIVITY AND GRAVITATION", 
  "id": "26643", 
  "issue": "11", 
  "issued": {
    "date-parts": [
      [
        2010, 
        1, 
        1
      ]
    ]
  }, 
  "page": "2543-2559", 
  "title": "Basic gravitational currents and Killing-Yano forms", 
  "type": "article-journal", 
  "volume": "42"
}
64
12
görüntülenme
indirilme
Görüntülenme 64
İndirme 12
Veri hacmi 1.9 kB
Tekil görüntülenme 58
Tekil indirme 12
Atıflar
  • Citation Indexes: 8
Okunma İstatistikleri
  • Readers: 8

Alıntı yap