Dergi makalesi Açık Erişim
Acik, O.; Ertem, U.; Onder, M.; Vercin, Abdullah
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Acik, O.</dc:creator> <dc:creator>Ertem, U.</dc:creator> <dc:creator>Onder, M.</dc:creator> <dc:creator>Vercin, Abdullah</dc:creator> <dc:date>2010-01-01</dc:date> <dc:description>It has been shown that for each Killing-Yano (KY)-form accepted by an n-dimensional (pseudo)Riemannian manifold of arbitrary signature, two different gravitational currents can be defined. Conservation of the currents are explicitly proved by showing co-exactness of the one and co-closedness of the other. Some general geometrical facts implied by these conservation laws are also elucidated. In particular, the conservation of the one-form currents implies that the scalar curvature of the manifold is a flow invariant for all of its Killing vector fields. It also directly follows that, while all KY-forms and their Hodge duals on a constant curvature manifold are the eigenforms of the Laplace-Beltrami operator, for an Einstein manifold this is certain only for KY 1-forms, (n - 1)-forms and their Hodge duals.</dc:description> <dc:identifier>https://aperta.ulakbim.gov.trrecord/26643</dc:identifier> <dc:identifier>oai:zenodo.org:26643</dc:identifier> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights> <dc:source>GENERAL RELATIVITY AND GRAVITATION 42(11) 2543-2559</dc:source> <dc:title>Basic gravitational currents and Killing-Yano forms</dc:title> <dc:type>info:eu-repo/semantics/article</dc:type> <dc:type>publication-article</dc:type> </oai_dc:dc>
Görüntülenme | 64 |
İndirme | 12 |
Veri hacmi | 1.9 kB |
Tekil görüntülenme | 58 |
Tekil indirme | 12 |