Dergi makalesi Açık Erişim

Basic gravitational currents and Killing-Yano forms

Acik, O.; Ertem, U.; Onder, M.; Vercin, Abdullah


JSON

{
  "conceptrecid": "26642", 
  "created": "2021-03-15T12:10:58.263118+00:00", 
  "doi": "10.1007/s10714-010-1075-4", 
  "files": [
    {
      "bucket": "8b4f548c-8b3d-4546-b7d5-d04f565921e5", 
      "checksum": "md5:fc4a9217bde3142aa903c4d816a3cf64", 
      "key": "bib-9148b619-6a4e-413b-a2c8-62c7d73916c2.txt", 
      "links": {
        "self": "https://aperta.ulakbim.gov.tr/api/files/8b4f548c-8b3d-4546-b7d5-d04f565921e5/bib-9148b619-6a4e-413b-a2c8-62c7d73916c2.txt"
      }, 
      "size": 159, 
      "type": "txt"
    }
  ], 
  "id": 26643, 
  "links": {
    "badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.1007/s10714-010-1075-4.svg", 
    "bucket": "https://aperta.ulakbim.gov.tr/api/files/8b4f548c-8b3d-4546-b7d5-d04f565921e5", 
    "doi": "https://doi.org/10.1007/s10714-010-1075-4", 
    "html": "https://aperta.ulakbim.gov.tr/record/26643", 
    "latest": "https://aperta.ulakbim.gov.tr/api/records/26643", 
    "latest_html": "https://aperta.ulakbim.gov.tr/record/26643"
  }, 
  "metadata": {
    "access_right": "open", 
    "access_right_category": "success", 
    "communities": [
      {
        "id": "tubitak-destekli-proje-yayinlari"
      }
    ], 
    "creators": [
      {
        "affiliation": "Ankara Univ, Fac Sci, Dept Phys, TR-06100 Tandogan, Turkey", 
        "name": "Acik, O."
      }, 
      {
        "affiliation": "Ankara Univ, Fac Sci, Dept Phys, TR-06100 Tandogan, Turkey", 
        "name": "Ertem, U."
      }, 
      {
        "affiliation": "Hacettepe Univ, Dept Engn Phys, TR-06532 Beytepe, Turkey", 
        "name": "Onder, M."
      }, 
      {
        "affiliation": "Ankara Univ, Fac Sci, Dept Phys, TR-06100 Tandogan, Turkey", 
        "name": "Vercin, Abdullah"
      }
    ], 
    "description": "It has been shown that for each Killing-Yano (KY)-form accepted by an n-dimensional (pseudo)Riemannian manifold of arbitrary signature, two different gravitational currents can be defined. Conservation of the currents are explicitly proved by showing co-exactness of the one and co-closedness of the other. Some general geometrical facts implied by these conservation laws are also elucidated. In particular, the conservation of the one-form currents implies that the scalar curvature of the manifold is a flow invariant for all of its Killing vector fields. It also directly follows that, while all KY-forms and their Hodge duals on a constant curvature manifold are the eigenforms of the Laplace-Beltrami operator, for an Einstein manifold this is certain only for KY 1-forms, (n - 1)-forms and their Hodge duals.", 
    "doi": "10.1007/s10714-010-1075-4", 
    "has_grant": false, 
    "journal": {
      "issue": "11", 
      "pages": "2543-2559", 
      "title": "GENERAL RELATIVITY AND GRAVITATION", 
      "volume": "42"
    }, 
    "license": {
      "id": "cc-by"
    }, 
    "publication_date": "2010-01-01", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "26643"
          }, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "26642"
          }
        }
      ]
    }, 
    "resource_type": {
      "subtype": "article", 
      "title": "Dergi makalesi", 
      "type": "publication"
    }, 
    "title": "Basic gravitational currents and Killing-Yano forms"
  }, 
  "owners": [
    1
  ], 
  "revision": 1, 
  "stats": {
    "downloads": 12.0, 
    "unique_downloads": 12.0, 
    "unique_views": 58.0, 
    "version_downloads": 12.0, 
    "version_unique_downloads": 12.0, 
    "version_unique_views": 52.0, 
    "version_views": 57.0, 
    "version_volume": 1908.0, 
    "views": 64.0, 
    "volume": 1908.0
  }, 
  "updated": "2021-03-15T12:10:58.307706+00:00"
}
64
12
görüntülenme
indirilme
Görüntülenme 64
İndirme 12
Veri hacmi 1.9 kB
Tekil görüntülenme 58
Tekil indirme 12
Atıflar
  • Citation Indexes: 8
Okunma İstatistikleri
  • Readers: 8

Alıntı yap