Dergi makalesi Açık Erişim
Mustafayev, Heybetkulu; Sevli, Hamdullah
<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
<leader>00000nam##2200000uu#4500</leader>
<datafield tag="909" ind1="C" ind2="O">
<subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield>
<subfield code="o">oai:aperta.ulakbim.gov.tr:239170</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">Let G be a locally compact abelian group and let M(G) be the convolution measure algebra of G. A measure mu is an element of M(G) is said to be power bounded if sup(n &gt;= 0) parallel to mu(n)parallel to(1) &lt; infinity, where mu(n) denotes nth convolution power of mu. We show that if mu is an element of M(G) is power bounded and A = [a(n,k)](n,k=0)(infinity) is a strongly regular matrix, then the limit lim(n -&gt;infinity) Sigma(infinity)(k=0) a(n,k) mu(k) exists in the weak* topology of M(G) and is equal to the idempotent measure theta, where (theta) over cap = 1(int)F(mu). Here, (theta) over cap is the Fourier-Stieltjes transform of theta, F-mu :={gamma is an element of Gamma : (mu) over cap(gamma) = 1}, and 1(int) F-mu is the characteristic function of int F-mu. Some applications are also given. (C) 2021 Elsevier Inc. All rights reserved.</subfield>
</datafield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">publication</subfield>
<subfield code="b">article</subfield>
</datafield>
<datafield tag="540" ind1=" " ind2=" ">
<subfield code="a">Creative Commons Attribution</subfield>
<subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="a">Mustafayev, Heybetkulu</subfield>
<subfield code="u">Van Yuzuncu Yil Univ, Fac Sci, Dept Math, Van, Turkey</subfield>
</datafield>
<datafield tag="856" ind1="4" ind2=" ">
<subfield code="z">md5:1e7dc1288f79efd639b2b1720467240f</subfield>
<subfield code="s">143</subfield>
<subfield code="u">https://aperta.ulakbim.gov.trrecord/239170/files/bib-73490d6d-3953-4af9-92c3-0dd298af27a2.txt</subfield>
</datafield>
<controlfield tag="005">20221007102741.0</controlfield>
<datafield tag="260" ind1=" " ind2=" ">
<subfield code="c">2021-01-01</subfield>
</datafield>
<datafield tag="024" ind1=" " ind2=" ">
<subfield code="a">10.1016/j.jmaa.2021.125090</subfield>
<subfield code="2">doi</subfield>
</datafield>
<datafield tag="542" ind1=" " ind2=" ">
<subfield code="l">open</subfield>
</datafield>
<datafield tag="245" ind1=" " ind2=" ">
<subfield code="a">Mean ergodic theorems for power bounded measures</subfield>
</datafield>
<datafield tag="909" ind1="C" ind2="4">
<subfield code="v">500</subfield>
<subfield code="p">JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS</subfield>
<subfield code="n">1</subfield>
</datafield>
<datafield tag="650" ind1="1" ind2="7">
<subfield code="a">cc-by</subfield>
<subfield code="2">opendefinition.org</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="a">Sevli, Hamdullah</subfield>
<subfield code="u">Van Yuzuncu Yil Univ, Fac Sci, Dept Math, Van, Turkey</subfield>
</datafield>
<controlfield tag="001">239170</controlfield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield>
</datafield>
</record>
| Görüntülenme | 29 |
| İndirme | 6 |
| Veri hacmi | 858 Bytes |
| Tekil görüntülenme | 28 |
| Tekil indirme | 6 |