Dergi makalesi Açık Erişim

Mean ergodic theorems for power bounded measures

Mustafayev, Heybetkulu; Sevli, Hamdullah


JSON

{
  "conceptrecid": "239169", 
  "created": "2022-10-07T10:27:41.642692+00:00", 
  "doi": "10.1016/j.jmaa.2021.125090", 
  "files": [
    {
      "bucket": "5b8cdb6d-10e2-4099-b480-460509509262", 
      "checksum": "md5:1e7dc1288f79efd639b2b1720467240f", 
      "key": "bib-73490d6d-3953-4af9-92c3-0dd298af27a2.txt", 
      "links": {
        "self": "https://aperta.ulakbim.gov.tr/api/files/5b8cdb6d-10e2-4099-b480-460509509262/bib-73490d6d-3953-4af9-92c3-0dd298af27a2.txt"
      }, 
      "size": 143, 
      "type": "txt"
    }
  ], 
  "id": 239170, 
  "links": {
    "badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.1016/j.jmaa.2021.125090.svg", 
    "bucket": "https://aperta.ulakbim.gov.tr/api/files/5b8cdb6d-10e2-4099-b480-460509509262", 
    "doi": "https://doi.org/10.1016/j.jmaa.2021.125090", 
    "html": "https://aperta.ulakbim.gov.tr/record/239170", 
    "latest": "https://aperta.ulakbim.gov.tr/api/records/239170", 
    "latest_html": "https://aperta.ulakbim.gov.tr/record/239170"
  }, 
  "metadata": {
    "access_right": "open", 
    "access_right_category": "success", 
    "communities": [
      {
        "id": "tubitak-destekli-proje-yayinlari"
      }
    ], 
    "creators": [
      {
        "affiliation": "Van Yuzuncu Yil Univ, Fac Sci, Dept Math, Van, Turkey", 
        "name": "Mustafayev, Heybetkulu"
      }, 
      {
        "affiliation": "Van Yuzuncu Yil Univ, Fac Sci, Dept Math, Van, Turkey", 
        "name": "Sevli, Hamdullah"
      }
    ], 
    "description": "Let G be a locally compact abelian group and let M(G) be the convolution measure algebra of G. A measure mu is an element of M(G) is said to be power bounded if sup(n >= 0) parallel to mu(n)parallel to(1) < infinity, where mu(n) denotes nth convolution power of mu. We show that if mu is an element of M(G) is power bounded and A = [a(n,k)](n,k=0)(infinity) is a strongly regular matrix, then the limit lim(n ->infinity) Sigma(infinity)(k=0) a(n,k) mu(k) exists in the weak* topology of M(G) and is equal to the idempotent measure theta, where (theta) over cap = 1(int)F(mu). Here, (theta) over cap is the Fourier-Stieltjes transform of theta, F-mu :={gamma is an element of Gamma : (mu) over cap(gamma) = 1}, and 1(int) F-mu is the characteristic function of int F-mu. Some applications are also given. (C) 2021 Elsevier Inc. All rights reserved.", 
    "doi": "10.1016/j.jmaa.2021.125090", 
    "has_grant": false, 
    "journal": {
      "issue": "1", 
      "title": "JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS", 
      "volume": "500"
    }, 
    "license": {
      "id": "cc-by"
    }, 
    "publication_date": "2021-01-01", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "239170"
          }, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "239169"
          }
        }
      ]
    }, 
    "resource_type": {
      "subtype": "article", 
      "title": "Dergi makalesi", 
      "type": "publication"
    }, 
    "science_branches": [
      "Di\u011fer"
    ], 
    "title": "Mean ergodic theorems for power bounded measures"
  }, 
  "owners": [
    1
  ], 
  "revision": 1, 
  "stats": {
    "downloads": 6.0, 
    "unique_downloads": 6.0, 
    "unique_views": 23.0, 
    "version_downloads": 6.0, 
    "version_unique_downloads": 6.0, 
    "version_unique_views": 23.0, 
    "version_views": 24.0, 
    "version_volume": 858.0, 
    "views": 24.0, 
    "volume": 858.0
  }, 
  "updated": "2022-10-07T10:27:41.702609+00:00"
}
24
6
görüntülenme
indirilme
Görüntülenme 24
İndirme 6
Veri hacmi 858 Bytes
Tekil görüntülenme 23
Tekil indirme 6

Alıntı yap