Dergi makalesi Açık Erişim

Mean ergodic theorems for power bounded measures

Mustafayev, Heybetkulu; Sevli, Hamdullah


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/239170</identifier>
  <creators>
    <creator>
      <creatorName>Mustafayev, Heybetkulu</creatorName>
      <givenName>Heybetkulu</givenName>
      <familyName>Mustafayev</familyName>
      <affiliation>Van Yuzuncu Yil Univ, Fac Sci, Dept Math, Van, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Sevli, Hamdullah</creatorName>
      <givenName>Hamdullah</givenName>
      <familyName>Sevli</familyName>
      <affiliation>Van Yuzuncu Yil Univ, Fac Sci, Dept Math, Van, Turkey</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Mean Ergodic Theorems For Power Bounded Measures</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2021</publicationYear>
  <dates>
    <date dateType="Issued">2021-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/239170</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.jmaa.2021.125090</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">Let G be a locally compact abelian group and let M(G) be the convolution measure algebra of G. A measure mu is an element of M(G) is said to be power bounded if sup(n &amp;gt;= 0) parallel to mu(n)parallel to(1) &amp;lt; infinity, where mu(n) denotes nth convolution power of mu. We show that if mu is an element of M(G) is power bounded and A = [a(n,k)](n,k=0)(infinity) is a strongly regular matrix, then the limit lim(n -&amp;gt;infinity) Sigma(infinity)(k=0) a(n,k) mu(k) exists in the weak* topology of M(G) and is equal to the idempotent measure theta, where (theta) over cap = 1(int)F(mu). Here, (theta) over cap is the Fourier-Stieltjes transform of theta, F-mu :={gamma is an element of Gamma : (mu) over cap(gamma) = 1}, and 1(int) F-mu is the characteristic function of int F-mu. Some applications are also given. (C) 2021 Elsevier Inc. All rights reserved.</description>
  </descriptions>
</resource>
24
6
görüntülenme
indirilme
Görüntülenme 24
İndirme 6
Veri hacmi 858 Bytes
Tekil görüntülenme 23
Tekil indirme 6

Alıntı yap