Dergi makalesi Açık Erişim
Mustafayev, Heybetkulu; Sevli, Hamdullah
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/239170</identifier> <creators> <creator> <creatorName>Mustafayev, Heybetkulu</creatorName> <givenName>Heybetkulu</givenName> <familyName>Mustafayev</familyName> <affiliation>Van Yuzuncu Yil Univ, Fac Sci, Dept Math, Van, Turkey</affiliation> </creator> <creator> <creatorName>Sevli, Hamdullah</creatorName> <givenName>Hamdullah</givenName> <familyName>Sevli</familyName> <affiliation>Van Yuzuncu Yil Univ, Fac Sci, Dept Math, Van, Turkey</affiliation> </creator> </creators> <titles> <title>Mean Ergodic Theorems For Power Bounded Measures</title> </titles> <publisher>Aperta</publisher> <publicationYear>2021</publicationYear> <dates> <date dateType="Issued">2021-01-01</date> </dates> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/239170</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.jmaa.2021.125090</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">Let G be a locally compact abelian group and let M(G) be the convolution measure algebra of G. A measure mu is an element of M(G) is said to be power bounded if sup(n &gt;= 0) parallel to mu(n)parallel to(1) &lt; infinity, where mu(n) denotes nth convolution power of mu. We show that if mu is an element of M(G) is power bounded and A = [a(n,k)](n,k=0)(infinity) is a strongly regular matrix, then the limit lim(n -&gt;infinity) Sigma(infinity)(k=0) a(n,k) mu(k) exists in the weak* topology of M(G) and is equal to the idempotent measure theta, where (theta) over cap = 1(int)F(mu). Here, (theta) over cap is the Fourier-Stieltjes transform of theta, F-mu :={gamma is an element of Gamma : (mu) over cap(gamma) = 1}, and 1(int) F-mu is the characteristic function of int F-mu. Some applications are also given. (C) 2021 Elsevier Inc. All rights reserved.</description> </descriptions> </resource>
Görüntülenme | 24 |
İndirme | 6 |
Veri hacmi | 858 Bytes |
Tekil görüntülenme | 23 |
Tekil indirme | 6 |