Dergi makalesi Açık Erişim

Mean ergodic theorems for power bounded measures

Mustafayev, Heybetkulu; Sevli, Hamdullah


JSON-LD (schema.org)

{
  "@context": "https://schema.org/", 
  "@id": 239170, 
  "@type": "ScholarlyArticle", 
  "creator": [
    {
      "@type": "Person", 
      "affiliation": "Van Yuzuncu Yil Univ, Fac Sci, Dept Math, Van, Turkey", 
      "name": "Mustafayev, Heybetkulu"
    }, 
    {
      "@type": "Person", 
      "affiliation": "Van Yuzuncu Yil Univ, Fac Sci, Dept Math, Van, Turkey", 
      "name": "Sevli, Hamdullah"
    }
  ], 
  "datePublished": "2021-01-01", 
  "description": "Let G be a locally compact abelian group and let M(G) be the convolution measure algebra of G. A measure mu is an element of M(G) is said to be power bounded if sup(n >= 0) parallel to mu(n)parallel to(1) < infinity, where mu(n) denotes nth convolution power of mu. We show that if mu is an element of M(G) is power bounded and A = [a(n,k)](n,k=0)(infinity) is a strongly regular matrix, then the limit lim(n ->infinity) Sigma(infinity)(k=0) a(n,k) mu(k) exists in the weak* topology of M(G) and is equal to the idempotent measure theta, where (theta) over cap = 1(int)F(mu). Here, (theta) over cap is the Fourier-Stieltjes transform of theta, F-mu :={gamma is an element of Gamma : (mu) over cap(gamma) = 1}, and 1(int) F-mu is the characteristic function of int F-mu. Some applications are also given. (C) 2021 Elsevier Inc. All rights reserved.", 
  "headline": "Mean ergodic theorems for power bounded measures", 
  "identifier": 239170, 
  "image": "https://aperta.ulakbim.gov.tr/static/img/logo/aperta_logo_with_icon.svg", 
  "license": "http://www.opendefinition.org/licenses/cc-by", 
  "name": "Mean ergodic theorems for power bounded measures", 
  "url": "https://aperta.ulakbim.gov.tr/record/239170"
}
24
6
görüntülenme
indirilme
Görüntülenme 24
İndirme 6
Veri hacmi 858 Bytes
Tekil görüntülenme 23
Tekil indirme 6

Alıntı yap