Dergi makalesi Açık Erişim
Tanisik, Gokhan; Zalluhoglu, Cemil; Ikizler-Cinbis, Nazli
<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
<leader>00000nam##2200000uu#4500</leader>
<datafield tag="909" ind1="C" ind2="O">
<subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield>
<subfield code="o">oai:aperta.ulakbim.gov.tr:236236</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">Recognizing human interactions in still images is quite a challenging task since compared to videos, there is only a glimpse of interaction in a single image. This work investigates the role of human poses in recognizing human-human interactions in still images. To this end, a multi-stream convolutional neural network architecture is proposed, which fuses different levels of human pose information to recognize human interactions better. In this context, several pose-based representations are explored. Experimental evaluations in an extended benchmark dataset show that the proposed multi-stream pose Convolutional Neural Network is successful in discriminating a wide range of human-human interactions and human poses when used in conjunction with the overall context provides discriminative cues about human-human interactions.</subfield>
</datafield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">publication</subfield>
<subfield code="b">article</subfield>
</datafield>
<datafield tag="540" ind1=" " ind2=" ">
<subfield code="a">Creative Commons Attribution</subfield>
<subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="a">Tanisik, Gokhan</subfield>
<subfield code="u">Hacettepe Univ, Dept Comp Engn, Ankara, Turkey</subfield>
</datafield>
<datafield tag="856" ind1="4" ind2=" ">
<subfield code="z">md5:b48b07774aa04357226ee646d239ba37</subfield>
<subfield code="s">198</subfield>
<subfield code="u">https://aperta.ulakbim.gov.trrecord/236236/files/bib-a1e33c74-21e3-45ae-b066-1978014ff84e.txt</subfield>
</datafield>
<controlfield tag="005">20221007093714.0</controlfield>
<datafield tag="260" ind1=" " ind2=" ">
<subfield code="c">2021-01-01</subfield>
</datafield>
<datafield tag="024" ind1=" " ind2=" ">
<subfield code="a">10.1016/j.image.2021.116265</subfield>
<subfield code="2">doi</subfield>
</datafield>
<datafield tag="542" ind1=" " ind2=" ">
<subfield code="l">open</subfield>
</datafield>
<datafield tag="245" ind1=" " ind2=" ">
<subfield code="a">Multi-stream pose convolutional neural networks for human interaction recognition in images</subfield>
</datafield>
<datafield tag="909" ind1="C" ind2="4">
<subfield code="v">95</subfield>
<subfield code="p">SIGNAL PROCESSING-IMAGE COMMUNICATION</subfield>
</datafield>
<datafield tag="650" ind1="1" ind2="7">
<subfield code="a">cc-by</subfield>
<subfield code="2">opendefinition.org</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="a">Zalluhoglu, Cemil</subfield>
<subfield code="u">Hacettepe Univ, Dept Comp Engn, Ankara, Turkey</subfield>
</datafield>
<datafield tag="700" ind1=" " ind2=" ">
<subfield code="a">Ikizler-Cinbis, Nazli</subfield>
<subfield code="u">Hacettepe Univ, Dept Comp Engn, Ankara, Turkey</subfield>
</datafield>
<controlfield tag="001">236236</controlfield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield>
</datafield>
</record>
| Görüntülenme | 29 |
| İndirme | 6 |
| Veri hacmi | 1.2 kB |
| Tekil görüntülenme | 29 |
| Tekil indirme | 6 |