Dergi makalesi Açık Erişim
Tanisik, Gokhan; Zalluhoglu, Cemil; Ikizler-Cinbis, Nazli
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/236236</identifier> <creators> <creator> <creatorName>Tanisik, Gokhan</creatorName> <givenName>Gokhan</givenName> <familyName>Tanisik</familyName> <affiliation>Hacettepe Univ, Dept Comp Engn, Ankara, Turkey</affiliation> </creator> <creator> <creatorName>Zalluhoglu, Cemil</creatorName> <givenName>Cemil</givenName> <familyName>Zalluhoglu</familyName> <affiliation>Hacettepe Univ, Dept Comp Engn, Ankara, Turkey</affiliation> </creator> <creator> <creatorName>Ikizler-Cinbis, Nazli</creatorName> <givenName>Nazli</givenName> <familyName>Ikizler-Cinbis</familyName> <affiliation>Hacettepe Univ, Dept Comp Engn, Ankara, Turkey</affiliation> </creator> </creators> <titles> <title>Multi-Stream Pose Convolutional Neural Networks For Human Interaction Recognition In Images</title> </titles> <publisher>Aperta</publisher> <publicationYear>2021</publicationYear> <dates> <date dateType="Issued">2021-01-01</date> </dates> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/236236</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.image.2021.116265</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">Recognizing human interactions in still images is quite a challenging task since compared to videos, there is only a glimpse of interaction in a single image. This work investigates the role of human poses in recognizing human-human interactions in still images. To this end, a multi-stream convolutional neural network architecture is proposed, which fuses different levels of human pose information to recognize human interactions better. In this context, several pose-based representations are explored. Experimental evaluations in an extended benchmark dataset show that the proposed multi-stream pose Convolutional Neural Network is successful in discriminating a wide range of human-human interactions and human poses when used in conjunction with the overall context provides discriminative cues about human-human interactions.</description> </descriptions> </resource>
Görüntülenme | 19 |
İndirme | 5 |
Veri hacmi | 990 Bytes |
Tekil görüntülenme | 19 |
Tekil indirme | 5 |