Dergi makalesi Açık Erişim
Tanisik, Gokhan; Zalluhoglu, Cemil; Ikizler-Cinbis, Nazli
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/236236</identifier>
<creators>
<creator>
<creatorName>Tanisik, Gokhan</creatorName>
<givenName>Gokhan</givenName>
<familyName>Tanisik</familyName>
<affiliation>Hacettepe Univ, Dept Comp Engn, Ankara, Turkey</affiliation>
</creator>
<creator>
<creatorName>Zalluhoglu, Cemil</creatorName>
<givenName>Cemil</givenName>
<familyName>Zalluhoglu</familyName>
<affiliation>Hacettepe Univ, Dept Comp Engn, Ankara, Turkey</affiliation>
</creator>
<creator>
<creatorName>Ikizler-Cinbis, Nazli</creatorName>
<givenName>Nazli</givenName>
<familyName>Ikizler-Cinbis</familyName>
<affiliation>Hacettepe Univ, Dept Comp Engn, Ankara, Turkey</affiliation>
</creator>
</creators>
<titles>
<title>Multi-Stream Pose Convolutional Neural Networks For Human Interaction Recognition In Images</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2021</publicationYear>
<dates>
<date dateType="Issued">2021-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/236236</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.image.2021.116265</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">Recognizing human interactions in still images is quite a challenging task since compared to videos, there is only a glimpse of interaction in a single image. This work investigates the role of human poses in recognizing human-human interactions in still images. To this end, a multi-stream convolutional neural network architecture is proposed, which fuses different levels of human pose information to recognize human interactions better. In this context, several pose-based representations are explored. Experimental evaluations in an extended benchmark dataset show that the proposed multi-stream pose Convolutional Neural Network is successful in discriminating a wide range of human-human interactions and human poses when used in conjunction with the overall context provides discriminative cues about human-human interactions.</description>
</descriptions>
</resource>
| Görüntülenme | 29 |
| İndirme | 6 |
| Veri hacmi | 1.2 kB |
| Tekil görüntülenme | 29 |
| Tekil indirme | 6 |