Dergi makalesi Açık Erişim

Multi-stream pose convolutional neural networks for human interaction recognition in images

Tanisik, Gokhan; Zalluhoglu, Cemil; Ikizler-Cinbis, Nazli


Dublin Core

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Tanisik, Gokhan</dc:creator>
  <dc:creator>Zalluhoglu, Cemil</dc:creator>
  <dc:creator>Ikizler-Cinbis, Nazli</dc:creator>
  <dc:date>2021-01-01</dc:date>
  <dc:description>Recognizing human interactions in still images is quite a challenging task since compared to videos, there is only a glimpse of interaction in a single image. This work investigates the role of human poses in recognizing human-human interactions in still images. To this end, a multi-stream convolutional neural network architecture is proposed, which fuses different levels of human pose information to recognize human interactions better. In this context, several pose-based representations are explored. Experimental evaluations in an extended benchmark dataset show that the proposed multi-stream pose Convolutional Neural Network is successful in discriminating a wide range of human-human interactions and human poses when used in conjunction with the overall context provides discriminative cues about human-human interactions.</dc:description>
  <dc:identifier>https://aperta.ulakbim.gov.trrecord/236236</dc:identifier>
  <dc:identifier>oai:aperta.ulakbim.gov.tr:236236</dc:identifier>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights>
  <dc:source>SIGNAL PROCESSING-IMAGE COMMUNICATION 95</dc:source>
  <dc:title>Multi-stream pose convolutional neural networks for human interaction recognition in images</dc:title>
  <dc:type>info:eu-repo/semantics/article</dc:type>
  <dc:type>publication-article</dc:type>
</oai_dc:dc>
19
5
görüntülenme
indirilme
Görüntülenme 19
İndirme 5
Veri hacmi 990 Bytes
Tekil görüntülenme 19
Tekil indirme 5

Alıntı yap