Dergi makalesi Açık Erişim
Tanisik, Gokhan; Zalluhoglu, Cemil; Ikizler-Cinbis, Nazli
{ "conceptrecid": "236235", "created": "2022-10-07T09:37:14.106603+00:00", "doi": "10.1016/j.image.2021.116265", "files": [ { "bucket": "1265d1d8-2e7f-4bd0-8032-adbd4bc51251", "checksum": "md5:b48b07774aa04357226ee646d239ba37", "key": "bib-a1e33c74-21e3-45ae-b066-1978014ff84e.txt", "links": { "self": "https://aperta.ulakbim.gov.tr/api/files/1265d1d8-2e7f-4bd0-8032-adbd4bc51251/bib-a1e33c74-21e3-45ae-b066-1978014ff84e.txt" }, "size": 198, "type": "txt" } ], "id": 236236, "links": { "badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.1016/j.image.2021.116265.svg", "bucket": "https://aperta.ulakbim.gov.tr/api/files/1265d1d8-2e7f-4bd0-8032-adbd4bc51251", "doi": "https://doi.org/10.1016/j.image.2021.116265", "html": "https://aperta.ulakbim.gov.tr/record/236236", "latest": "https://aperta.ulakbim.gov.tr/api/records/236236", "latest_html": "https://aperta.ulakbim.gov.tr/record/236236" }, "metadata": { "access_right": "open", "access_right_category": "success", "communities": [ { "id": "tubitak-destekli-proje-yayinlari" } ], "creators": [ { "affiliation": "Hacettepe Univ, Dept Comp Engn, Ankara, Turkey", "name": "Tanisik, Gokhan" }, { "affiliation": "Hacettepe Univ, Dept Comp Engn, Ankara, Turkey", "name": "Zalluhoglu, Cemil" }, { "affiliation": "Hacettepe Univ, Dept Comp Engn, Ankara, Turkey", "name": "Ikizler-Cinbis, Nazli" } ], "description": "Recognizing human interactions in still images is quite a challenging task since compared to videos, there is only a glimpse of interaction in a single image. This work investigates the role of human poses in recognizing human-human interactions in still images. To this end, a multi-stream convolutional neural network architecture is proposed, which fuses different levels of human pose information to recognize human interactions better. In this context, several pose-based representations are explored. Experimental evaluations in an extended benchmark dataset show that the proposed multi-stream pose Convolutional Neural Network is successful in discriminating a wide range of human-human interactions and human poses when used in conjunction with the overall context provides discriminative cues about human-human interactions.", "doi": "10.1016/j.image.2021.116265", "has_grant": false, "journal": { "title": "SIGNAL PROCESSING-IMAGE COMMUNICATION", "volume": "95" }, "license": { "id": "cc-by" }, "publication_date": "2021-01-01", "relations": { "version": [ { "count": 1, "index": 0, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "236236" }, "parent": { "pid_type": "recid", "pid_value": "236235" } } ] }, "resource_type": { "subtype": "article", "title": "Dergi makalesi", "type": "publication" }, "science_branches": [ "Di\u011fer" ], "title": "Multi-stream pose convolutional neural networks for human interaction recognition in images" }, "owners": [ 1 ], "revision": 1, "stats": { "downloads": 5.0, "unique_downloads": 5.0, "unique_views": 19.0, "version_downloads": 5.0, "version_unique_downloads": 5.0, "version_unique_views": 19.0, "version_views": 19.0, "version_volume": 990.0, "views": 19.0, "volume": 990.0 }, "updated": "2022-10-07T09:37:14.150112+00:00" }
Görüntülenme | 19 |
İndirme | 5 |
Veri hacmi | 990 Bytes |
Tekil görüntülenme | 19 |
Tekil indirme | 5 |