Dergi makalesi Açık Erişim
Tanisik, Gokhan; Zalluhoglu, Cemil; Ikizler-Cinbis, Nazli
{
"conceptrecid": "236235",
"created": "2022-10-07T09:37:14.106603+00:00",
"doi": "10.1016/j.image.2021.116265",
"files": [
{
"bucket": "1265d1d8-2e7f-4bd0-8032-adbd4bc51251",
"checksum": "md5:b48b07774aa04357226ee646d239ba37",
"key": "bib-a1e33c74-21e3-45ae-b066-1978014ff84e.txt",
"links": {
"self": "https://aperta.ulakbim.gov.tr/api/files/1265d1d8-2e7f-4bd0-8032-adbd4bc51251/bib-a1e33c74-21e3-45ae-b066-1978014ff84e.txt"
},
"size": 198,
"type": "txt"
}
],
"id": 236236,
"links": {
"badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.1016/j.image.2021.116265.svg",
"bucket": "https://aperta.ulakbim.gov.tr/api/files/1265d1d8-2e7f-4bd0-8032-adbd4bc51251",
"doi": "https://doi.org/10.1016/j.image.2021.116265",
"html": "https://aperta.ulakbim.gov.tr/record/236236",
"latest": "https://aperta.ulakbim.gov.tr/api/records/236236",
"latest_html": "https://aperta.ulakbim.gov.tr/record/236236"
},
"metadata": {
"access_right": "open",
"access_right_category": "success",
"communities": [
{
"id": "tubitak-destekli-proje-yayinlari"
}
],
"creators": [
{
"affiliation": "Hacettepe Univ, Dept Comp Engn, Ankara, Turkey",
"name": "Tanisik, Gokhan"
},
{
"affiliation": "Hacettepe Univ, Dept Comp Engn, Ankara, Turkey",
"name": "Zalluhoglu, Cemil"
},
{
"affiliation": "Hacettepe Univ, Dept Comp Engn, Ankara, Turkey",
"name": "Ikizler-Cinbis, Nazli"
}
],
"description": "Recognizing human interactions in still images is quite a challenging task since compared to videos, there is only a glimpse of interaction in a single image. This work investigates the role of human poses in recognizing human-human interactions in still images. To this end, a multi-stream convolutional neural network architecture is proposed, which fuses different levels of human pose information to recognize human interactions better. In this context, several pose-based representations are explored. Experimental evaluations in an extended benchmark dataset show that the proposed multi-stream pose Convolutional Neural Network is successful in discriminating a wide range of human-human interactions and human poses when used in conjunction with the overall context provides discriminative cues about human-human interactions.",
"doi": "10.1016/j.image.2021.116265",
"has_grant": false,
"journal": {
"title": "SIGNAL PROCESSING-IMAGE COMMUNICATION",
"volume": "95"
},
"license": {
"id": "cc-by"
},
"publication_date": "2021-01-01",
"relations": {
"version": [
{
"count": 1,
"index": 0,
"is_last": true,
"last_child": {
"pid_type": "recid",
"pid_value": "236236"
},
"parent": {
"pid_type": "recid",
"pid_value": "236235"
}
}
]
},
"resource_type": {
"subtype": "article",
"title": "Dergi makalesi",
"type": "publication"
},
"science_branches": [
"Di\u011fer"
],
"title": "Multi-stream pose convolutional neural networks for human interaction recognition in images"
},
"owners": [
1
],
"revision": 1,
"stats": {
"downloads": 6.0,
"unique_downloads": 6.0,
"unique_views": 29.0,
"version_downloads": 6.0,
"version_unique_downloads": 6.0,
"version_unique_views": 28.0,
"version_views": 28.0,
"version_volume": 1188.0,
"views": 29.0,
"volume": 1188.0
},
"updated": "2022-10-07T09:37:14.150112+00:00"
}
| Görüntülenme | 29 |
| İndirme | 6 |
| Veri hacmi | 1.2 kB |
| Tekil görüntülenme | 29 |
| Tekil indirme | 6 |