Dergi makalesi Açık Erişim
Mustafayev, Heybetkulu; Topal, Hayri
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Mustafayev, Heybetkulu</dc:creator> <dc:creator>Topal, Hayri</dc:creator> <dc:date>2021-01-01</dc:date> <dc:description>Let G be a locally compact abelian group and let L-1 (G) and M(G) be respectively the group algebra and the convolution measure algebra of G. For mu is an element of M(G), let T(mu)f = mu * f be the convolution operator on L-1(G). A measure mu is an element of M(G) is said to be power bounded if sup(n >= 0)parallel to mu(n)parallel to(1) < infinity, where mu(n) denotes the nth convolution power of mu. We study some ergodic properties of the convolution operator T-mu, in the case when mu is power bounded. We also present some results concerning almost everywhere convergence of the sequence {T(mu)(n)f} in L-1 (G).</dc:description> <dc:identifier>https://aperta.ulakbim.gov.trrecord/234166</dc:identifier> <dc:identifier>oai:aperta.ulakbim.gov.tr:234166</dc:identifier> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights> <dc:source>COLLOQUIUM MATHEMATICUM 165(2) 321-340</dc:source> <dc:title>ERGODIC PROPERTIES OF CONVOLUTION OPERATORS IN GROUP ALGEBRAS</dc:title> <dc:type>info:eu-repo/semantics/article</dc:type> <dc:type>publication-article</dc:type> </oai_dc:dc>
Görüntülenme | 14 |
İndirme | 4 |
Veri hacmi | 556 Bytes |
Tekil görüntülenme | 14 |
Tekil indirme | 4 |