Dergi makalesi Açık Erişim

ERGODIC PROPERTIES OF CONVOLUTION OPERATORS IN GROUP ALGEBRAS

Mustafayev, Heybetkulu; Topal, Hayri


Dublin Core

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Mustafayev, Heybetkulu</dc:creator>
  <dc:creator>Topal, Hayri</dc:creator>
  <dc:date>2021-01-01</dc:date>
  <dc:description>Let G be a locally compact abelian group and let L-1 (G) and M(G) be respectively the group algebra and the convolution measure algebra of G. For mu is an element of M(G), let T(mu)f = mu * f be the convolution operator on L-1(G). A measure mu is an element of M(G) is said to be power bounded if sup(n &gt;= 0)parallel to mu(n)parallel to(1) &lt; infinity, where mu(n) denotes the nth convolution power of mu. We study some ergodic properties of the convolution operator T-mu, in the case when mu is power bounded. We also present some results concerning almost everywhere convergence of the sequence {T(mu)(n)f} in L-1 (G).</dc:description>
  <dc:identifier>https://aperta.ulakbim.gov.trrecord/234166</dc:identifier>
  <dc:identifier>oai:aperta.ulakbim.gov.tr:234166</dc:identifier>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights>
  <dc:source>COLLOQUIUM MATHEMATICUM 165(2) 321-340</dc:source>
  <dc:title>ERGODIC PROPERTIES OF CONVOLUTION OPERATORS IN GROUP ALGEBRAS</dc:title>
  <dc:type>info:eu-repo/semantics/article</dc:type>
  <dc:type>publication-article</dc:type>
</oai_dc:dc>
14
4
görüntülenme
indirilme
Görüntülenme 14
İndirme 4
Veri hacmi 556 Bytes
Tekil görüntülenme 14
Tekil indirme 4

Alıntı yap