Dergi makalesi Açık Erişim
Mustafayev, Heybetkulu; Topal, Hayri
{ "DOI": "10.4064/cm8214-6-2020", "abstract": "Let G be a locally compact abelian group and let L-1 (G) and M(G) be respectively the group algebra and the convolution measure algebra of G. For mu is an element of M(G), let T(mu)f = mu * f be the convolution operator on L-1(G). A measure mu is an element of M(G) is said to be power bounded if sup(n >= 0)parallel to mu(n)parallel to(1) < infinity, where mu(n) denotes the nth convolution power of mu. We study some ergodic properties of the convolution operator T-mu, in the case when mu is power bounded. We also present some results concerning almost everywhere convergence of the sequence {T(mu)(n)f} in L-1 (G).", "author": [ { "family": "Mustafayev", "given": " Heybetkulu" }, { "family": "Topal", "given": " Hayri" } ], "container_title": "COLLOQUIUM MATHEMATICUM", "id": "234166", "issue": "2", "issued": { "date-parts": [ [ 2021, 1, 1 ] ] }, "page": "321-340", "title": "ERGODIC PROPERTIES OF CONVOLUTION OPERATORS IN GROUP ALGEBRAS", "type": "article-journal", "volume": "165" }
Görüntülenme | 14 |
İndirme | 4 |
Veri hacmi | 556 Bytes |
Tekil görüntülenme | 14 |
Tekil indirme | 4 |