Dergi makalesi Açık Erişim
Mustafayev, Heybetkulu; Topal, Hayri
{
"DOI": "10.4064/cm8214-6-2020",
"abstract": "Let G be a locally compact abelian group and let L-1 (G) and M(G) be respectively the group algebra and the convolution measure algebra of G. For mu is an element of M(G), let T(mu)f = mu * f be the convolution operator on L-1(G). A measure mu is an element of M(G) is said to be power bounded if sup(n >= 0)parallel to mu(n)parallel to(1) < infinity, where mu(n) denotes the nth convolution power of mu. We study some ergodic properties of the convolution operator T-mu, in the case when mu is power bounded. We also present some results concerning almost everywhere convergence of the sequence {T(mu)(n)f} in L-1 (G).",
"author": [
{
"family": "Mustafayev",
"given": " Heybetkulu"
},
{
"family": "Topal",
"given": " Hayri"
}
],
"container_title": "COLLOQUIUM MATHEMATICUM",
"id": "234166",
"issue": "2",
"issued": {
"date-parts": [
[
2021,
1,
1
]
]
},
"page": "321-340",
"title": "ERGODIC PROPERTIES OF CONVOLUTION OPERATORS IN GROUP ALGEBRAS",
"type": "article-journal",
"volume": "165"
}
| Görüntülenme | 28 |
| İndirme | 10 |
| Veri hacmi | 1.4 kB |
| Tekil görüntülenme | 28 |
| Tekil indirme | 10 |