Dergi makalesi Açık Erişim

ERGODIC PROPERTIES OF CONVOLUTION OPERATORS IN GROUP ALGEBRAS

Mustafayev, Heybetkulu; Topal, Hayri


Citation Style Language JSON

{
  "DOI": "10.4064/cm8214-6-2020", 
  "abstract": "Let G be a locally compact abelian group and let L-1 (G) and M(G) be respectively the group algebra and the convolution measure algebra of G. For mu is an element of M(G), let T(mu)f = mu * f be the convolution operator on L-1(G). A measure mu is an element of M(G) is said to be power bounded if sup(n >= 0)parallel to mu(n)parallel to(1) < infinity, where mu(n) denotes the nth convolution power of mu. We study some ergodic properties of the convolution operator T-mu, in the case when mu is power bounded. We also present some results concerning almost everywhere convergence of the sequence {T(mu)(n)f} in L-1 (G).", 
  "author": [
    {
      "family": "Mustafayev", 
      "given": " Heybetkulu"
    }, 
    {
      "family": "Topal", 
      "given": " Hayri"
    }
  ], 
  "container_title": "COLLOQUIUM MATHEMATICUM", 
  "id": "234166", 
  "issue": "2", 
  "issued": {
    "date-parts": [
      [
        2021, 
        1, 
        1
      ]
    ]
  }, 
  "page": "321-340", 
  "title": "ERGODIC PROPERTIES OF CONVOLUTION OPERATORS IN GROUP ALGEBRAS", 
  "type": "article-journal", 
  "volume": "165"
}
28
10
görüntülenme
indirilme
Görüntülenme 28
İndirme 10
Veri hacmi 1.4 kB
Tekil görüntülenme 28
Tekil indirme 10
Atıflar
  • Citation Indexes: 1
Okunma İstatistikleri
  • Readers: 1

Alıntı yap

Mustafayev, H. ve Topal, H. (2021). ERGODIC PROPERTIES OF CONVOLUTION OPERATORS IN GROUP ALGEBRAS. COLLOQUIUM MATHEMATICUM, 165(2), 321–340. doi:10.4064/cm8214-6-2020

Loading...