Dergi makalesi Açık Erişim

ERGODIC PROPERTIES OF CONVOLUTION OPERATORS IN GROUP ALGEBRAS

Mustafayev, Heybetkulu; Topal, Hayri


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/234166</identifier>
  <creators>
    <creator>
      <creatorName>Mustafayev, Heybetkulu</creatorName>
      <givenName>Heybetkulu</givenName>
      <familyName>Mustafayev</familyName>
      <affiliation>Van Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-65080 Van, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Topal, Hayri</creatorName>
      <givenName>Hayri</givenName>
      <familyName>Topal</familyName>
      <affiliation>Van Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-65080 Van, Turkey</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Ergodic Properties Of Convolution Operators In Group Algebras</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2021</publicationYear>
  <dates>
    <date dateType="Issued">2021-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/234166</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.4064/cm8214-6-2020</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">Let G be a locally compact abelian group and let L-1 (G) and M(G) be respectively the group algebra and the convolution measure algebra of G. For mu is an element of M(G), let T(mu)f = mu * f be the convolution operator on L-1(G). A measure mu is an element of M(G) is said to be power bounded if sup(n &amp;gt;= 0)parallel to mu(n)parallel to(1) &amp;lt; infinity, where mu(n) denotes the nth convolution power of mu. We study some ergodic properties of the convolution operator T-mu, in the case when mu is power bounded. We also present some results concerning almost everywhere convergence of the sequence {T(mu)(n)f} in L-1 (G).</description>
  </descriptions>
</resource>
14
4
görüntülenme
indirilme
Görüntülenme 14
İndirme 4
Veri hacmi 556 Bytes
Tekil görüntülenme 14
Tekil indirme 4

Alıntı yap