Dergi makalesi Açık Erişim
Mustafayev, Heybetkulu; Topal, Hayri
{ "@context": "https://schema.org/", "@id": 234166, "@type": "ScholarlyArticle", "creator": [ { "@type": "Person", "affiliation": "Van Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-65080 Van, Turkey", "name": "Mustafayev, Heybetkulu" }, { "@type": "Person", "affiliation": "Van Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-65080 Van, Turkey", "name": "Topal, Hayri" } ], "datePublished": "2021-01-01", "description": "Let G be a locally compact abelian group and let L-1 (G) and M(G) be respectively the group algebra and the convolution measure algebra of G. For mu is an element of M(G), let T(mu)f = mu * f be the convolution operator on L-1(G). A measure mu is an element of M(G) is said to be power bounded if sup(n >= 0)parallel to mu(n)parallel to(1) < infinity, where mu(n) denotes the nth convolution power of mu. We study some ergodic properties of the convolution operator T-mu, in the case when mu is power bounded. We also present some results concerning almost everywhere convergence of the sequence {T(mu)(n)f} in L-1 (G).", "headline": "ERGODIC PROPERTIES OF CONVOLUTION OPERATORS IN GROUP ALGEBRAS", "identifier": 234166, "image": "https://aperta.ulakbim.gov.tr/static/img/logo/aperta_logo_with_icon.svg", "license": "http://www.opendefinition.org/licenses/cc-by", "name": "ERGODIC PROPERTIES OF CONVOLUTION OPERATORS IN GROUP ALGEBRAS", "url": "https://aperta.ulakbim.gov.tr/record/234166" }
Görüntülenme | 14 |
İndirme | 4 |
Veri hacmi | 556 Bytes |
Tekil görüntülenme | 14 |
Tekil indirme | 4 |