Dergi makalesi Açık Erişim

Compressible polyglycolic acid-based nanofibrous matrices as a bone filler: fabrication, physicochemical characterisations, and biocompatibility evaluation

Cakmak, Soner


JSON-LD (schema.org)

{
  "@context": "https://schema.org/", 
  "@id": 233012, 
  "@type": "ScholarlyArticle", 
  "creator": [
    {
      "@type": "Person", 
      "affiliation": "Hacettepe Univ, Grad Sch Sci & Engn, Bioengn Div, Ankara, Turkey", 
      "name": "Cakmak, Soner"
    }
  ], 
  "datePublished": "2022-01-01", 
  "description": "In this study, amorphous hydroxyapatite (am-HAp) incorporated compressible and nanofibrous polyglycolic acid (PGA-HAp) matrices were fabricated by three-dimensional (3-D) electrospinning. The synthesised am-HAp particles were in the size of 260 +/- 45 nm. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analyses confirmed the chemical and phase structure of the am-HAp particles. Continuous PGA-HAp nanofibers with the mean diameter of 367 +/- 70 nm were successfully produced and am-HAp particles were well integrated into the nanofibers. Moreover, XRD and FTIR analyses verified the presence of am-HAp in the PGA nanofibers. The incorporation of the am-HAp to the nanofibers increased the maximum degradation temperature of PGA matrices from 340 degrees C to 362 degrees C. Mechanical analyses confirmed the elasticity of the 3-D PGA matrices. In vitro cell culture studies verified the biocompatibility of the nanofibrous matrices. Hence, 3-D nanofibrous PGA-HAp matrices may be a good alternative to ceramic bone substitutes due to their flexibility and physicochemical properties.", 
  "headline": "Compressible polyglycolic acid-based nanofibrous matrices as a bone filler: fabrication, physicochemical characterisations, and biocompatibility evaluation", 
  "identifier": 233012, 
  "image": "https://aperta.ulakbim.gov.tr/static/img/logo/aperta_logo_with_icon.svg", 
  "license": "http://www.opendefinition.org/licenses/cc-by", 
  "name": "Compressible polyglycolic acid-based nanofibrous matrices as a bone filler: fabrication, physicochemical characterisations, and biocompatibility evaluation", 
  "url": "https://aperta.ulakbim.gov.tr/record/233012"
}
7
3
görüntülenme
indirilme
Görüntülenme 7
İndirme 3
Veri hacmi 630 Bytes
Tekil görüntülenme 6
Tekil indirme 3

Alıntı yap