Dergi makalesi Açık Erişim

On ternary Diophantine equations of signature (p, p, 2) over number fields

Isik, Erman; Kara, Yasemin; Ozman, Ekin


MARC21 XML

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="n">4</subfield>
    <subfield code="c">1197-1211</subfield>
    <subfield code="v">44</subfield>
    <subfield code="p">TURKISH JOURNAL OF MATHEMATICS</subfield>
  </datafield>
  <controlfield tag="005">20210315072811.0</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="o">oai:zenodo.org:10545</subfield>
    <subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Bogazici Univ, Fac Arts &amp; Sci, Dept Math, Istanbul, Turkey</subfield>
    <subfield code="a">Isik, Erman</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">Let K be a totally real number field with narrow class number one and O-K be its ring of integers. We prove that there is a constant B-K depending only on K such that for any prime exponent p &amp;gt; B-K the Fermat type equation x(p) + y(p) = z(2) with x, y, z. O-K does not have certain type of solutions. Our main tools in the proof are modularity, level lowering, and image of inertia comparisons.</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="2">opendefinition.org</subfield>
    <subfield code="a">cc-by</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
    <subfield code="a">Creative Commons Attribution</subfield>
  </datafield>
  <controlfield tag="001">10545</controlfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">On ternary Diophantine equations of signature (p, p, 2) over number fields</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-01-01</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Bogazici Univ, Fac Arts &amp; Sci, Dept Math, Istanbul, Turkey</subfield>
    <subfield code="a">Kara, Yasemin</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Bogazici Univ, Fac Arts &amp; Sci, Dept Math, Istanbul, Turkey</subfield>
    <subfield code="a">Ozman, Ekin</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="u">https://aperta.ulakbim.gov.trrecord/10545/files/10-3906-mat-1911-88.pdf</subfield>
    <subfield code="s">210532</subfield>
    <subfield code="z">md5:27467a3957f89a4099eebd5336898692</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.3906/mat-1911-88</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
</record>
39
13
görüntülenme
indirilme
Görüntülenme 39
İndirme 13
Veri hacmi 2.7 MB
Tekil görüntülenme 38
Tekil indirme 13

Alıntı yap