Dergi makalesi Açık Erişim

On ternary Diophantine equations of signature (p, p, 2) over number fields

Isik, Erman; Kara, Yasemin; Ozman, Ekin


Dublin Core

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Isik, Erman</dc:creator>
  <dc:creator>Kara, Yasemin</dc:creator>
  <dc:creator>Ozman, Ekin</dc:creator>
  <dc:date>2020-01-01</dc:date>
  <dc:description>Let K be a totally real number field with narrow class number one and O-K be its ring of integers. We prove that there is a constant B-K depending only on K such that for any prime exponent p &gt; B-K the Fermat type equation x(p) + y(p) = z(2) with x, y, z. O-K does not have certain type of solutions. Our main tools in the proof are modularity, level lowering, and image of inertia comparisons.</dc:description>
  <dc:identifier>https://aperta.ulakbim.gov.trrecord/10545</dc:identifier>
  <dc:identifier>oai:zenodo.org:10545</dc:identifier>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights>
  <dc:source>TURKISH JOURNAL OF MATHEMATICS 44(4) 1197-1211</dc:source>
  <dc:title>On ternary Diophantine equations of signature (p, p, 2) over number fields</dc:title>
  <dc:type>info:eu-repo/semantics/article</dc:type>
  <dc:type>publication-article</dc:type>
</oai_dc:dc>
39
13
görüntülenme
indirilme
Görüntülenme 39
İndirme 13
Veri hacmi 2.7 MB
Tekil görüntülenme 38
Tekil indirme 13

Alıntı yap