Dergi makalesi Açık Erişim
Isik, Erman; Kara, Yasemin; Ozman, Ekin
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/10545</identifier>
<creators>
<creator>
<creatorName>Isik, Erman</creatorName>
<givenName>Erman</givenName>
<familyName>Isik</familyName>
<affiliation>Bogazici Univ, Fac Arts & Sci, Dept Math, Istanbul, Turkey</affiliation>
</creator>
<creator>
<creatorName>Kara, Yasemin</creatorName>
<givenName>Yasemin</givenName>
<familyName>Kara</familyName>
<affiliation>Bogazici Univ, Fac Arts & Sci, Dept Math, Istanbul, Turkey</affiliation>
</creator>
<creator>
<creatorName>Ozman, Ekin</creatorName>
<givenName>Ekin</givenName>
<familyName>Ozman</familyName>
<affiliation>Bogazici Univ, Fac Arts & Sci, Dept Math, Istanbul, Turkey</affiliation>
</creator>
</creators>
<titles>
<title>On Ternary Diophantine Equations Of Signature (P, P, 2) Over Number Fields</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2020</publicationYear>
<dates>
<date dateType="Issued">2020-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/10545</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.3906/mat-1911-88</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">Let K be a totally real number field with narrow class number one and O-K be its ring of integers. We prove that there is a constant B-K depending only on K such that for any prime exponent p &gt; B-K the Fermat type equation x(p) + y(p) = z(2) with x, y, z. O-K does not have certain type of solutions. Our main tools in the proof are modularity, level lowering, and image of inertia comparisons.</description>
</descriptions>
</resource>
| Görüntülenme | 51 |
| İndirme | 42 |
| Veri hacmi | 8.8 MB |
| Tekil görüntülenme | 47 |
| Tekil indirme | 41 |