Dergi makalesi Açık Erişim

On ternary Diophantine equations of signature (p, p, 2) over number fields

Isik, Erman; Kara, Yasemin; Ozman, Ekin


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/10545</identifier>
  <creators>
    <creator>
      <creatorName>Isik, Erman</creatorName>
      <givenName>Erman</givenName>
      <familyName>Isik</familyName>
      <affiliation>Bogazici Univ, Fac Arts &amp; Sci, Dept Math, Istanbul, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Kara, Yasemin</creatorName>
      <givenName>Yasemin</givenName>
      <familyName>Kara</familyName>
      <affiliation>Bogazici Univ, Fac Arts &amp; Sci, Dept Math, Istanbul, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Ozman, Ekin</creatorName>
      <givenName>Ekin</givenName>
      <familyName>Ozman</familyName>
      <affiliation>Bogazici Univ, Fac Arts &amp; Sci, Dept Math, Istanbul, Turkey</affiliation>
    </creator>
  </creators>
  <titles>
    <title>On Ternary Diophantine Equations Of Signature (P, P, 2) Over Number Fields</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2020</publicationYear>
  <dates>
    <date dateType="Issued">2020-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/10545</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.3906/mat-1911-88</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">Let K be a totally real number field with narrow class number one and O-K be its ring of integers. We prove that there is a constant B-K depending only on K such that for any prime exponent p &amp;gt; B-K the Fermat type equation x(p) + y(p) = z(2) with x, y, z. O-K does not have certain type of solutions. Our main tools in the proof are modularity, level lowering, and image of inertia comparisons.</description>
  </descriptions>
</resource>
39
13
görüntülenme
indirilme
Görüntülenme 39
İndirme 13
Veri hacmi 2.7 MB
Tekil görüntülenme 38
Tekil indirme 13

Alıntı yap