Dergi makalesi Açık Erişim
Isik, Erman; Kara, Yasemin; Ozman, Ekin
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/10545</identifier> <creators> <creator> <creatorName>Isik, Erman</creatorName> <givenName>Erman</givenName> <familyName>Isik</familyName> <affiliation>Bogazici Univ, Fac Arts & Sci, Dept Math, Istanbul, Turkey</affiliation> </creator> <creator> <creatorName>Kara, Yasemin</creatorName> <givenName>Yasemin</givenName> <familyName>Kara</familyName> <affiliation>Bogazici Univ, Fac Arts & Sci, Dept Math, Istanbul, Turkey</affiliation> </creator> <creator> <creatorName>Ozman, Ekin</creatorName> <givenName>Ekin</givenName> <familyName>Ozman</familyName> <affiliation>Bogazici Univ, Fac Arts & Sci, Dept Math, Istanbul, Turkey</affiliation> </creator> </creators> <titles> <title>On Ternary Diophantine Equations Of Signature (P, P, 2) Over Number Fields</title> </titles> <publisher>Aperta</publisher> <publicationYear>2020</publicationYear> <dates> <date dateType="Issued">2020-01-01</date> </dates> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/10545</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.3906/mat-1911-88</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">Let K be a totally real number field with narrow class number one and O-K be its ring of integers. We prove that there is a constant B-K depending only on K such that for any prime exponent p &gt; B-K the Fermat type equation x(p) + y(p) = z(2) with x, y, z. O-K does not have certain type of solutions. Our main tools in the proof are modularity, level lowering, and image of inertia comparisons.</description> </descriptions> </resource>
Görüntülenme | 39 |
İndirme | 13 |
Veri hacmi | 2.7 MB |
Tekil görüntülenme | 38 |
Tekil indirme | 13 |