Dergi makalesi Açık Erişim
Isik, Erman; Kara, Yasemin; Ozman, Ekin
Let K be a totally real number field with narrow class number one and O-K be its ring of integers. We prove that there is a constant B-K depending only on K such that for any prime exponent p > B-K the Fermat type equation x(p) + y(p) = z(2) with x, y, z. O-K does not have certain type of solutions. Our main tools in the proof are modularity, level lowering, and image of inertia comparisons.
Dosya adı | Boyutu | |
---|---|---|
10-3906-mat-1911-88.pdf
md5:27467a3957f89a4099eebd5336898692 |
210.5 kB | İndir |
Görüntülenme | 39 |
İndirme | 13 |
Veri hacmi | 2.7 MB |
Tekil görüntülenme | 38 |
Tekil indirme | 13 |