Dergi makalesi Açık Erişim
Budakci, Gulter; Oruc, Halil
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Budakci, Gulter</dc:creator> <dc:creator>Oruc, Halil</dc:creator> <dc:date>2012-01-01</dc:date> <dc:description>We consider a special knot sequence u(i+1) = qu(i) + 1 and define a one parameter family of Bernstein-Schoenberg operators. We prove that this operator converges to f uniformly for all f in C[0, 1]. This operator also inherits the geometric properties of the classical Bernstein-Schoenberg operator. Moreover we show that the error function E-m,E-n has a particular symmetry property, that is E-m,E-n(f; x; q) = E-m,E-n(f; 1 - x, 1/q) provided that f is symmetric on [0, 1]. (C) 2012 Elsevier Ltd. All rights reserved.</dc:description> <dc:identifier>https://aperta.ulakbim.gov.trrecord/86323</dc:identifier> <dc:identifier>oai:zenodo.org:86323</dc:identifier> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights> <dc:source>MATHEMATICAL AND COMPUTER MODELLING 56(3-4) 56-59</dc:source> <dc:title>Bernstein-Schoenberg operator with knots at the q-integers</dc:title> <dc:type>info:eu-repo/semantics/article</dc:type> <dc:type>publication-article</dc:type> </oai_dc:dc>
Görüntülenme | 34 |
İndirme | 10 |
Veri hacmi | 1.4 kB |
Tekil görüntülenme | 33 |
Tekil indirme | 10 |