Dergi makalesi Açık Erişim
Budakci, Gulter; Oruc, Halil
We consider a special knot sequence u(i+1) = qu(i) + 1 and define a one parameter family of Bernstein-Schoenberg operators. We prove that this operator converges to f uniformly for all f in C[0, 1]. This operator also inherits the geometric properties of the classical Bernstein-Schoenberg operator. Moreover we show that the error function E-m,E-n has a particular symmetry property, that is E-m,E-n(f; x; q) = E-m,E-n(f; 1 - x, 1/q) provided that f is symmetric on [0, 1]. (C) 2012 Elsevier Ltd. All rights reserved.
Dosya adı | Boyutu | |
---|---|---|
bib-ae63b37f-d5a0-40ae-920f-74fef9d09db4.txt
md5:2436d2c97a4f5ceeafaa965afec1b104 |
143 Bytes | İndir |
Görüntülenme | 50 |
İndirme | 11 |
Veri hacmi | 1.6 kB |
Tekil görüntülenme | 47 |
Tekil indirme | 11 |
Budakci, G. ve Oruc, H. (2012). Bernstein-Schoenberg operator with knots at the q-integers. MATHEMATICAL AND COMPUTER MODELLING, 56(3-4), 56–59. doi:10.1016/j.mcm.2011.12.049