Dergi makalesi Açık Erişim
Budakci, Gulter; Oruc, Halil
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/86323</identifier>
<creators>
<creator>
<creatorName>Budakci, Gulter</creatorName>
<givenName>Gulter</givenName>
<familyName>Budakci</familyName>
<affiliation>Dokuz Eylul Univ, Grad Sch Nat & Appl Sci, TR-35160 Izmir, Turkey</affiliation>
</creator>
<creator>
<creatorName>Oruc, Halil</creatorName>
<givenName>Halil</givenName>
<familyName>Oruc</familyName>
<affiliation>Dokuz Eylul Univ, Fac Sci, Dept Math, TR-35160 Izmir, Turkey</affiliation>
</creator>
</creators>
<titles>
<title>Bernstein-Schoenberg Operator With Knots At The Q-Integers</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2012</publicationYear>
<dates>
<date dateType="Issued">2012-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/86323</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.mcm.2011.12.049</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">We consider a special knot sequence u(i+1) = qu(i) + 1 and define a one parameter family of Bernstein-Schoenberg operators. We prove that this operator converges to f uniformly for all f in C[0, 1]. This operator also inherits the geometric properties of the classical Bernstein-Schoenberg operator. Moreover we show that the error function E-m,E-n has a particular symmetry property, that is E-m,E-n(f; x; q) = E-m,E-n(f; 1 - x, 1/q) provided that f is symmetric on [0, 1]. (C) 2012 Elsevier Ltd. All rights reserved.</description>
</descriptions>
</resource>
| Görüntülenme | 50 |
| İndirme | 11 |
| Veri hacmi | 1.6 kB |
| Tekil görüntülenme | 47 |
| Tekil indirme | 11 |