Dergi makalesi Açık Erişim
Budakci, Gulter; Oruc, Halil
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/86323</identifier> <creators> <creator> <creatorName>Budakci, Gulter</creatorName> <givenName>Gulter</givenName> <familyName>Budakci</familyName> <affiliation>Dokuz Eylul Univ, Grad Sch Nat & Appl Sci, TR-35160 Izmir, Turkey</affiliation> </creator> <creator> <creatorName>Oruc, Halil</creatorName> <givenName>Halil</givenName> <familyName>Oruc</familyName> <affiliation>Dokuz Eylul Univ, Fac Sci, Dept Math, TR-35160 Izmir, Turkey</affiliation> </creator> </creators> <titles> <title>Bernstein-Schoenberg Operator With Knots At The Q-Integers</title> </titles> <publisher>Aperta</publisher> <publicationYear>2012</publicationYear> <dates> <date dateType="Issued">2012-01-01</date> </dates> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/86323</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.mcm.2011.12.049</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">We consider a special knot sequence u(i+1) = qu(i) + 1 and define a one parameter family of Bernstein-Schoenberg operators. We prove that this operator converges to f uniformly for all f in C[0, 1]. This operator also inherits the geometric properties of the classical Bernstein-Schoenberg operator. Moreover we show that the error function E-m,E-n has a particular symmetry property, that is E-m,E-n(f; x; q) = E-m,E-n(f; 1 - x, 1/q) provided that f is symmetric on [0, 1]. (C) 2012 Elsevier Ltd. All rights reserved.</description> </descriptions> </resource>
Görüntülenme | 34 |
İndirme | 10 |
Veri hacmi | 1.4 kB |
Tekil görüntülenme | 33 |
Tekil indirme | 10 |