Dergi makalesi Açık Erişim

Bernstein-Schoenberg operator with knots at the q-integers

Budakci, Gulter; Oruc, Halil


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/86323</identifier>
  <creators>
    <creator>
      <creatorName>Budakci, Gulter</creatorName>
      <givenName>Gulter</givenName>
      <familyName>Budakci</familyName>
      <affiliation>Dokuz Eylul Univ, Grad Sch Nat &amp; Appl Sci, TR-35160 Izmir, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Oruc, Halil</creatorName>
      <givenName>Halil</givenName>
      <familyName>Oruc</familyName>
      <affiliation>Dokuz Eylul Univ, Fac Sci, Dept Math, TR-35160 Izmir, Turkey</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Bernstein-Schoenberg Operator With Knots At The Q-Integers</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2012</publicationYear>
  <dates>
    <date dateType="Issued">2012-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/86323</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.mcm.2011.12.049</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">We consider a special knot sequence u(i+1) = qu(i) + 1 and define a one parameter family of Bernstein-Schoenberg operators. We prove that this operator converges to f uniformly for all f in C[0, 1]. This operator also inherits the geometric properties of the classical Bernstein-Schoenberg operator. Moreover we show that the error function E-m,E-n has a particular symmetry property, that is E-m,E-n(f; x; q) = E-m,E-n(f; 1 - x, 1/q) provided that f is symmetric on [0, 1]. (C) 2012 Elsevier Ltd. All rights reserved.</description>
  </descriptions>
</resource>
34
10
görüntülenme
indirilme
Görüntülenme 34
İndirme 10
Veri hacmi 1.4 kB
Tekil görüntülenme 33
Tekil indirme 10

Alıntı yap