Dergi makalesi Açık Erişim
Dagdeviren, Ali; Yuce, Salim
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Dagdeviren, Ali</dc:creator> <dc:creator>Yuce, Salim</dc:creator> <dc:date>2019-01-01</dc:date> <dc:description>After a brief review of the different types of quaternions, we develop a new perspective for dual quaternions with dividing two parts. Due to this new perspective, we will define the isotropic and non-isotropic dual quaternions. Then we will also give the basic algebraic concepts about the dual quaternions. Moreover, we define isotropic dual quaternionic curves and non-isotropic dual quaternionic curves. Via these definitions we find Serret-Frenet formulae for isotropic dual quaternionic curves. Finally, we will use these results to derive the Serret-Frenet formulae for non-isotropic dual quaternionic curves.</dc:description> <dc:identifier>https://aperta.ulakbim.gov.trrecord/71949</dc:identifier> <dc:identifier>oai:zenodo.org:71949</dc:identifier> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights> <dc:source>FILOMAT 33(4) 1037-1046</dc:source> <dc:title>Dual Quaternions and Dual Quaternionic Curves</dc:title> <dc:type>info:eu-repo/semantics/article</dc:type> <dc:type>publication-article</dc:type> </oai_dc:dc>
| Görüntülenme | 45 |
| İndirme | 8 |
| Veri hacmi | 856 Bytes |
| Tekil görüntülenme | 41 |
| Tekil indirme | 8 |