Dergi makalesi Açık Erişim

Dual Quaternions and Dual Quaternionic Curves

Dagdeviren, Ali; Yuce, Salim


Dublin Core

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Dagdeviren, Ali</dc:creator>
  <dc:creator>Yuce, Salim</dc:creator>
  <dc:date>2019-01-01</dc:date>
  <dc:description>After a brief review of the different types of quaternions, we develop a new perspective for dual quaternions with dividing two parts. Due to this new perspective, we will define the isotropic and non-isotropic dual quaternions. Then we will also give the basic algebraic concepts about the dual quaternions. Moreover, we define isotropic dual quaternionic curves and non-isotropic dual quaternionic curves. Via these definitions we find Serret-Frenet formulae for isotropic dual quaternionic curves. Finally, we will use these results to derive the Serret-Frenet formulae for non-isotropic dual quaternionic curves.</dc:description>
  <dc:identifier>https://aperta.ulakbim.gov.trrecord/71949</dc:identifier>
  <dc:identifier>oai:zenodo.org:71949</dc:identifier>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights>
  <dc:source>FILOMAT 33(4) 1037-1046</dc:source>
  <dc:title>Dual Quaternions and Dual Quaternionic Curves</dc:title>
  <dc:type>info:eu-repo/semantics/article</dc:type>
  <dc:type>publication-article</dc:type>
</oai_dc:dc>
45
8
görüntülenme
indirilme
Görüntülenme 45
İndirme 8
Veri hacmi 856 Bytes
Tekil görüntülenme 41
Tekil indirme 8

Alıntı yap