Dergi makalesi Açık Erişim
Dagdeviren, Ali; Yuce, Salim
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/71949</identifier>
<creators>
<creator>
<creatorName>Dagdeviren, Ali</creatorName>
<givenName>Ali</givenName>
<familyName>Dagdeviren</familyName>
<affiliation>THY Aviat Acad, Istanbul, Turkey</affiliation>
</creator>
<creator>
<creatorName>Yuce, Salim</creatorName>
<givenName>Salim</givenName>
<familyName>Yuce</familyName>
<affiliation>Yildiz Tech Univ, Dept Math, Davutpasa Campus, Istanbul, Turkey</affiliation>
</creator>
</creators>
<titles>
<title>Dual Quaternions And Dual Quaternionic Curves</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2019</publicationYear>
<dates>
<date dateType="Issued">2019-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/71949</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.2298/FIL1904037D</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">After a brief review of the different types of quaternions, we develop a new perspective for dual quaternions with dividing two parts. Due to this new perspective, we will define the isotropic and non-isotropic dual quaternions. Then we will also give the basic algebraic concepts about the dual quaternions. Moreover, we define isotropic dual quaternionic curves and non-isotropic dual quaternionic curves. Via these definitions we find Serret-Frenet formulae for isotropic dual quaternionic curves. Finally, we will use these results to derive the Serret-Frenet formulae for non-isotropic dual quaternionic curves.</description>
</descriptions>
</resource>
| Görüntülenme | 45 |
| İndirme | 8 |
| Veri hacmi | 856 Bytes |
| Tekil görüntülenme | 41 |
| Tekil indirme | 8 |