Dergi makalesi Açık Erişim

Dual Quaternions and Dual Quaternionic Curves

Dagdeviren, Ali; Yuce, Salim


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/71949</identifier>
  <creators>
    <creator>
      <creatorName>Dagdeviren, Ali</creatorName>
      <givenName>Ali</givenName>
      <familyName>Dagdeviren</familyName>
      <affiliation>THY Aviat Acad, Istanbul, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Yuce, Salim</creatorName>
      <givenName>Salim</givenName>
      <familyName>Yuce</familyName>
      <affiliation>Yildiz Tech Univ, Dept Math, Davutpasa Campus, Istanbul, Turkey</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Dual Quaternions And Dual Quaternionic Curves</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2019</publicationYear>
  <dates>
    <date dateType="Issued">2019-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/71949</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.2298/FIL1904037D</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">After a brief review of the different types of quaternions, we develop a new perspective for dual quaternions with dividing two parts. Due to this new perspective, we will define the isotropic and non-isotropic dual quaternions. Then we will also give the basic algebraic concepts about the dual quaternions. Moreover, we define isotropic dual quaternionic curves and non-isotropic dual quaternionic curves. Via these definitions we find Serret-Frenet formulae for isotropic dual quaternionic curves. Finally, we will use these results to derive the Serret-Frenet formulae for non-isotropic dual quaternionic curves.</description>
  </descriptions>
</resource>
45
8
görüntülenme
indirilme
Görüntülenme 45
İndirme 8
Veri hacmi 856 Bytes
Tekil görüntülenme 41
Tekil indirme 8

Alıntı yap