Dergi makalesi Açık Erişim
Dagdeviren, Ali; Yuce, Salim
After a brief review of the different types of quaternions, we develop a new perspective for dual quaternions with dividing two parts. Due to this new perspective, we will define the isotropic and non-isotropic dual quaternions. Then we will also give the basic algebraic concepts about the dual quaternions. Moreover, we define isotropic dual quaternionic curves and non-isotropic dual quaternionic curves. Via these definitions we find Serret-Frenet formulae for isotropic dual quaternionic curves. Finally, we will use these results to derive the Serret-Frenet formulae for non-isotropic dual quaternionic curves.
| Dosya adı | Boyutu | |
|---|---|---|
|
bib-0b84e586-87f2-4de6-ae56-e92e7a790bb2.txt
md5:4989870c06787769a68c3445335b613a |
107 Bytes | İndir |
| Görüntülenme | 45 |
| İndirme | 8 |
| Veri hacmi | 856 Bytes |
| Tekil görüntülenme | 41 |
| Tekil indirme | 8 |