Dergi makalesi Açık Erişim
Topcu, Hatice; Sorgun, Sezer; Haemers, Willem H.
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2019-01-01</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">Nevsehir Haci Bektas Veli Univ, Dept Math, Nevsehir, Turkey</subfield> <subfield code="a">Topcu, Hatice</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield> <subfield code="a">Creative Commons Attribution</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Sorgun, Sezer</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Tilburg Univ, Dept Econometr & OR, Tilburg, Netherlands</subfield> <subfield code="a">Haemers, Willem H.</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="o">oai:zenodo.org:70741</subfield> <subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a">The pineapple graph K-p(q) is obtained by appending q pendant edges to a vertex of a complete graph K-p (p &gt;= 3, q &gt;= 1). We prove that among connected graphs, the pineapple graph is determined by its adjacency spectrum. Moreover, we determine all disconnected graphs which are cospectral with a pineapple graph. Thus we find for which values of p and q the pineapple graph K-p(q) is determined by its adjacency spectrum. The main tool is a recent classification of all graphs with all but three eigenvalues equal to 0 or -1 by the third author. (C) 2018 Elsevier B.V. All rights reserved.</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.1016/j.dam.2018.10.002</subfield> <subfield code="2">doi</subfield> </datafield> <controlfield tag="005">20210316031937.0</controlfield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">The graphs cospectral with the pineapple graph</subfield> </datafield> <datafield tag="909" ind1="C" ind2="4"> <subfield code="c">52-59</subfield> <subfield code="p">DISCRETE APPLIED MATHEMATICS</subfield> <subfield code="v">269</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="2">opendefinition.org</subfield> <subfield code="a">cc-by</subfield> </datafield> <controlfield tag="001">70741</controlfield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="b">article</subfield> <subfield code="a">publication</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="u">https://aperta.ulakbim.gov.trrecord/70741/files/bib-19c8f5f1-ad39-4cb9-80b9-df202bee70bb.txt</subfield> <subfield code="z">md5:db3dc079d04c4507f908687c91460dd2</subfield> <subfield code="s">139</subfield> </datafield> </record>
Görüntülenme | 62 |
İndirme | 7 |
Veri hacmi | 973 Bytes |
Tekil görüntülenme | 54 |
Tekil indirme | 7 |
Topcu, H., Sorgun, S. ve Haemers, W. H. (2019). The graphs cospectral with the pineapple graph. DISCRETE APPLIED MATHEMATICS, 269, 52–59. doi:10.1016/j.dam.2018.10.002