Dergi makalesi Açık Erişim
Topcu, Hatice; Sorgun, Sezer; Haemers, Willem H.
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/70741</identifier>
<creators>
<creator>
<creatorName>Topcu, Hatice</creatorName>
<givenName>Hatice</givenName>
<familyName>Topcu</familyName>
<affiliation>Nevsehir Haci Bektas Veli Univ, Dept Math, Nevsehir, Turkey</affiliation>
</creator>
<creator>
<creatorName>Sorgun, Sezer</creatorName>
<givenName>Sezer</givenName>
<familyName>Sorgun</familyName>
</creator>
<creator>
<creatorName>Haemers, Willem H.</creatorName>
<givenName>Willem H.</givenName>
<familyName>Haemers</familyName>
<affiliation>Tilburg Univ, Dept Econometr & OR, Tilburg, Netherlands</affiliation>
</creator>
</creators>
<titles>
<title>The Graphs Cospectral With The Pineapple Graph</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2019</publicationYear>
<dates>
<date dateType="Issued">2019-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/70741</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.dam.2018.10.002</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">The pineapple graph K-p(q) is obtained by appending q pendant edges to a vertex of a complete graph K-p (p &gt;= 3, q &gt;= 1). We prove that among connected graphs, the pineapple graph is determined by its adjacency spectrum. Moreover, we determine all disconnected graphs which are cospectral with a pineapple graph. Thus we find for which values of p and q the pineapple graph K-p(q) is determined by its adjacency spectrum. The main tool is a recent classification of all graphs with all but three eigenvalues equal to 0 or -1 by the third author. (C) 2018 Elsevier B.V. All rights reserved.</description>
</descriptions>
</resource>
| Görüntülenme | 62 |
| İndirme | 7 |
| Veri hacmi | 973 Bytes |
| Tekil görüntülenme | 54 |
| Tekil indirme | 7 |