Dergi makalesi Açık Erişim

The graphs cospectral with the pineapple graph

Topcu, Hatice; Sorgun, Sezer; Haemers, Willem H.


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/70741</identifier>
  <creators>
    <creator>
      <creatorName>Topcu, Hatice</creatorName>
      <givenName>Hatice</givenName>
      <familyName>Topcu</familyName>
      <affiliation>Nevsehir Haci Bektas Veli Univ, Dept Math, Nevsehir, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Sorgun, Sezer</creatorName>
      <givenName>Sezer</givenName>
      <familyName>Sorgun</familyName>
    </creator>
    <creator>
      <creatorName>Haemers, Willem H.</creatorName>
      <givenName>Willem H.</givenName>
      <familyName>Haemers</familyName>
      <affiliation>Tilburg Univ, Dept Econometr &amp; OR, Tilburg, Netherlands</affiliation>
    </creator>
  </creators>
  <titles>
    <title>The Graphs Cospectral With The Pineapple Graph</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2019</publicationYear>
  <dates>
    <date dateType="Issued">2019-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/70741</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.dam.2018.10.002</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">The pineapple graph K-p(q) is obtained by appending q pendant edges to a vertex of a complete graph K-p (p &amp;gt;= 3, q &amp;gt;= 1). We prove that among connected graphs, the pineapple graph is determined by its adjacency spectrum. Moreover, we determine all disconnected graphs which are cospectral with a pineapple graph. Thus we find for which values of p and q the pineapple graph K-p(q) is determined by its adjacency spectrum. The main tool is a recent classification of all graphs with all but three eigenvalues equal to 0 or -1 by the third author. (C) 2018 Elsevier B.V. All rights reserved.</description>
  </descriptions>
</resource>
62
7
görüntülenme
indirilme
Görüntülenme 62
İndirme 7
Veri hacmi 973 Bytes
Tekil görüntülenme 54
Tekil indirme 7
Atıflar
  • Citation Indexes: 9
Okunma İstatistikleri
  • Readers: 5

Alıntı yap