Dergi makalesi Açık Erişim
Topcu, Hatice; Sorgun, Sezer; Haemers, Willem H.
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/70741</identifier> <creators> <creator> <creatorName>Topcu, Hatice</creatorName> <givenName>Hatice</givenName> <familyName>Topcu</familyName> <affiliation>Nevsehir Haci Bektas Veli Univ, Dept Math, Nevsehir, Turkey</affiliation> </creator> <creator> <creatorName>Sorgun, Sezer</creatorName> <givenName>Sezer</givenName> <familyName>Sorgun</familyName> </creator> <creator> <creatorName>Haemers, Willem H.</creatorName> <givenName>Willem H.</givenName> <familyName>Haemers</familyName> <affiliation>Tilburg Univ, Dept Econometr & OR, Tilburg, Netherlands</affiliation> </creator> </creators> <titles> <title>The Graphs Cospectral With The Pineapple Graph</title> </titles> <publisher>Aperta</publisher> <publicationYear>2019</publicationYear> <dates> <date dateType="Issued">2019-01-01</date> </dates> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/70741</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.dam.2018.10.002</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">The pineapple graph K-p(q) is obtained by appending q pendant edges to a vertex of a complete graph K-p (p &gt;= 3, q &gt;= 1). We prove that among connected graphs, the pineapple graph is determined by its adjacency spectrum. Moreover, we determine all disconnected graphs which are cospectral with a pineapple graph. Thus we find for which values of p and q the pineapple graph K-p(q) is determined by its adjacency spectrum. The main tool is a recent classification of all graphs with all but three eigenvalues equal to 0 or -1 by the third author. (C) 2018 Elsevier B.V. All rights reserved.</description> </descriptions> </resource>
Görüntülenme | 62 |
İndirme | 7 |
Veri hacmi | 973 Bytes |
Tekil görüntülenme | 54 |
Tekil indirme | 7 |