Dergi makalesi Açık Erişim

The graphs cospectral with the pineapple graph

Topcu, Hatice; Sorgun, Sezer; Haemers, Willem H.


Dublin Core

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Topcu, Hatice</dc:creator>
  <dc:creator>Sorgun, Sezer</dc:creator>
  <dc:creator>Haemers, Willem H.</dc:creator>
  <dc:date>2019-01-01</dc:date>
  <dc:description>The pineapple graph K-p(q) is obtained by appending q pendant edges to a vertex of a complete graph K-p (p &gt;= 3, q &gt;= 1). We prove that among connected graphs, the pineapple graph is determined by its adjacency spectrum. Moreover, we determine all disconnected graphs which are cospectral with a pineapple graph. Thus we find for which values of p and q the pineapple graph K-p(q) is determined by its adjacency spectrum. The main tool is a recent classification of all graphs with all but three eigenvalues equal to 0 or -1 by the third author. (C) 2018 Elsevier B.V. All rights reserved.</dc:description>
  <dc:identifier>https://aperta.ulakbim.gov.trrecord/70741</dc:identifier>
  <dc:identifier>oai:zenodo.org:70741</dc:identifier>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights>
  <dc:source>DISCRETE APPLIED MATHEMATICS 269 52-59</dc:source>
  <dc:title>The graphs cospectral with the pineapple graph</dc:title>
  <dc:type>info:eu-repo/semantics/article</dc:type>
  <dc:type>publication-article</dc:type>
</oai_dc:dc>
62
7
görüntülenme
indirilme
Görüntülenme 62
İndirme 7
Veri hacmi 973 Bytes
Tekil görüntülenme 54
Tekil indirme 7
Atıflar
  • Citation Indexes: 9
Okunma İstatistikleri
  • Readers: 5

Alıntı yap

Topcu, H., Sorgun, S. ve Haemers, W. H. (2019). The graphs cospectral with the pineapple graph. DISCRETE APPLIED MATHEMATICS, 269, 52–59. doi:10.1016/j.dam.2018.10.002

Loading...