Dergi makalesi Açık Erişim
Topcu, Hatice; Sorgun, Sezer; Haemers, Willem H.
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Topcu, Hatice</dc:creator> <dc:creator>Sorgun, Sezer</dc:creator> <dc:creator>Haemers, Willem H.</dc:creator> <dc:date>2019-01-01</dc:date> <dc:description>The pineapple graph K-p(q) is obtained by appending q pendant edges to a vertex of a complete graph K-p (p >= 3, q >= 1). We prove that among connected graphs, the pineapple graph is determined by its adjacency spectrum. Moreover, we determine all disconnected graphs which are cospectral with a pineapple graph. Thus we find for which values of p and q the pineapple graph K-p(q) is determined by its adjacency spectrum. The main tool is a recent classification of all graphs with all but three eigenvalues equal to 0 or -1 by the third author. (C) 2018 Elsevier B.V. All rights reserved.</dc:description> <dc:identifier>https://aperta.ulakbim.gov.trrecord/70741</dc:identifier> <dc:identifier>oai:zenodo.org:70741</dc:identifier> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights> <dc:source>DISCRETE APPLIED MATHEMATICS 269 52-59</dc:source> <dc:title>The graphs cospectral with the pineapple graph</dc:title> <dc:type>info:eu-repo/semantics/article</dc:type> <dc:type>publication-article</dc:type> </oai_dc:dc>
Görüntülenme | 62 |
İndirme | 7 |
Veri hacmi | 973 Bytes |
Tekil görüntülenme | 54 |
Tekil indirme | 7 |
Topcu, H., Sorgun, S. ve Haemers, W. H. (2019). The graphs cospectral with the pineapple graph. DISCRETE APPLIED MATHEMATICS, 269, 52–59. doi:10.1016/j.dam.2018.10.002