Dergi makalesi Açık Erişim

On Nekovar's Heights, Exceptional Zeros and a Conjecture of Mazur-Tate-Teitelbaum

Buyukboduk, Kazim


Dublin Core

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Buyukboduk, Kazim</dc:creator>
  <dc:date>2016-01-01</dc:date>
  <dc:description>Let E/Q be an elliptic curve which has split multiplicative reduction at a prime p and whose analytic rank r(an)(E) equals one. The main goal of this article is to relate the second-order derivative of the Mazur-Tate-Teitelbaum p-adic L-function L-p(E, s) of E to Nekovr's height pairing evaluated on natural elements arising from the Beilinson-Kato elements. Along the way, we extend a Rubin-style formula of Nekovar to apply in the presence of exceptional zeros. Our height formula allows us, among other things, to compare the order of vanishing of L-p(E, s) at s = 1 with its (complex) analytic rank ran(E) assuming the non-triviality of the height pairing. This has consequences toward a conjecture of Mazur, Tate, and Teitelbaum.</dc:description>
  <dc:identifier>https://aperta.ulakbim.gov.trrecord/60143</dc:identifier>
  <dc:identifier>oai:zenodo.org:60143</dc:identifier>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights>
  <dc:source>INTERNATIONAL MATHEMATICS RESEARCH NOTICES 2016(7) 2197-2237</dc:source>
  <dc:title>On Nekovar's Heights, Exceptional Zeros and a Conjecture of Mazur-Tate-Teitelbaum</dc:title>
  <dc:type>info:eu-repo/semantics/article</dc:type>
  <dc:type>publication-article</dc:type>
</oai_dc:dc>
51
10
görüntülenme
indirilme
Görüntülenme 51
İndirme 10
Veri hacmi 1.7 kB
Tekil görüntülenme 47
Tekil indirme 10

Alıntı yap