Dergi makalesi Açık Erişim
Buyukboduk, Kazim
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/60143</identifier>
<creators>
<creator>
<creatorName>Buyukboduk, Kazim</creatorName>
<givenName>Kazim</givenName>
<familyName>Buyukboduk</familyName>
<affiliation>Koc Univ Math, TR-34450 Istanbul, Turkey</affiliation>
</creator>
</creators>
<titles>
<title>On Nekovar'S Heights, Exceptional Zeros And A Conjecture Of Mazur-Tate-Teitelbaum</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2016</publicationYear>
<dates>
<date dateType="Issued">2016-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/60143</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1093/imrn/rnv205</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">Let E/Q be an elliptic curve which has split multiplicative reduction at a prime p and whose analytic rank r(an)(E) equals one. The main goal of this article is to relate the second-order derivative of the Mazur-Tate-Teitelbaum p-adic L-function L-p(E, s) of E to Nekovr's height pairing evaluated on natural elements arising from the Beilinson-Kato elements. Along the way, we extend a Rubin-style formula of Nekovar to apply in the presence of exceptional zeros. Our height formula allows us, among other things, to compare the order of vanishing of L-p(E, s) at s = 1 with its (complex) analytic rank ran(E) assuming the non-triviality of the height pairing. This has consequences toward a conjecture of Mazur, Tate, and Teitelbaum.</description>
</descriptions>
</resource>
| Görüntülenme | 51 |
| İndirme | 10 |
| Veri hacmi | 1.7 kB |
| Tekil görüntülenme | 47 |
| Tekil indirme | 10 |