Dergi makalesi Açık Erişim

On Nekovar's Heights, Exceptional Zeros and a Conjecture of Mazur-Tate-Teitelbaum

Buyukboduk, Kazim


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/60143</identifier>
  <creators>
    <creator>
      <creatorName>Buyukboduk, Kazim</creatorName>
      <givenName>Kazim</givenName>
      <familyName>Buyukboduk</familyName>
      <affiliation>Koc Univ Math, TR-34450 Istanbul, Turkey</affiliation>
    </creator>
  </creators>
  <titles>
    <title>On Nekovar'S Heights, Exceptional Zeros And A Conjecture Of Mazur-Tate-Teitelbaum</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2016</publicationYear>
  <dates>
    <date dateType="Issued">2016-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/60143</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1093/imrn/rnv205</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">Let E/Q be an elliptic curve which has split multiplicative reduction at a prime p and whose analytic rank r(an)(E) equals one. The main goal of this article is to relate the second-order derivative of the Mazur-Tate-Teitelbaum p-adic L-function L-p(E, s) of E to Nekovr's height pairing evaluated on natural elements arising from the Beilinson-Kato elements. Along the way, we extend a Rubin-style formula of Nekovar to apply in the presence of exceptional zeros. Our height formula allows us, among other things, to compare the order of vanishing of L-p(E, s) at s = 1 with its (complex) analytic rank ran(E) assuming the non-triviality of the height pairing. This has consequences toward a conjecture of Mazur, Tate, and Teitelbaum.</description>
  </descriptions>
</resource>
51
10
görüntülenme
indirilme
Görüntülenme 51
İndirme 10
Veri hacmi 1.7 kB
Tekil görüntülenme 47
Tekil indirme 10

Alıntı yap