Dergi makalesi Açık Erişim

On Nekovar's Heights, Exceptional Zeros and a Conjecture of Mazur-Tate-Teitelbaum

   Buyukboduk, Kazim

Let E/Q be an elliptic curve which has split multiplicative reduction at a prime p and whose analytic rank r(an)(E) equals one. The main goal of this article is to relate the second-order derivative of the Mazur-Tate-Teitelbaum p-adic L-function L-p(E, s) of E to Nekovr's height pairing evaluated on natural elements arising from the Beilinson-Kato elements. Along the way, we extend a Rubin-style formula of Nekovar to apply in the presence of exceptional zeros. Our height formula allows us, among other things, to compare the order of vanishing of L-p(E, s) at s = 1 with its (complex) analytic rank ran(E) assuming the non-triviality of the height pairing. This has consequences toward a conjecture of Mazur, Tate, and Teitelbaum.

Dosyalar (169 Bytes)
Dosya adı Boyutu
bib-a067dd0d-bbd5-4484-8daa-d17e1e93d3a0.txt
md5:1f9d0bd4547107c4dc16640ab2a1c553
169 Bytes İndir
51
10
görüntülenme
indirilme
Görüntülenme 51
İndirme 10
Veri hacmi 1.7 kB
Tekil görüntülenme 47
Tekil indirme 10

Alıntı yap