Dergi makalesi Açık Erişim

Intrinsic equations for a relaxed elastic line of second kind on an oriented surface

Bayram, Ergin; Kasap, Emin


Dublin Core

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Bayram, Ergin</dc:creator>
  <dc:creator>Kasap, Emin</dc:creator>
  <dc:date>2016-01-01</dc:date>
  <dc:description>Let alpha(s) be an arc on a connected oriented surface S in E-3, parameterized by arc length s, with torsion tau and length l. The total square torsion H of alpha is defined by H = integral(l)(0) tau(2) ds. The arc alpha is called a relaxed elastic line of second kind if it is an extremal for the variational problem of minimizing the value of H within the family of all arcs of length l on S having the same initial point and initial direction as alpha. In this study, we obtain differential equation and boundary conditions for a relaxed elastic line of second kind on an oriented surface.</dc:description>
  <dc:identifier>https://aperta.ulakbim.gov.trrecord/57739</dc:identifier>
  <dc:identifier>oai:zenodo.org:57739</dc:identifier>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights>
  <dc:source>INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS 13(3)</dc:source>
  <dc:title>Intrinsic equations for a relaxed elastic line of second kind on an oriented surface</dc:title>
  <dc:type>info:eu-repo/semantics/article</dc:type>
  <dc:type>publication-article</dc:type>
</oai_dc:dc>
32
5
görüntülenme
indirilme
Görüntülenme 32
İndirme 5
Veri hacmi 925 Bytes
Tekil görüntülenme 29
Tekil indirme 5

Alıntı yap