Dergi makalesi Açık Erişim

Intrinsic equations for a relaxed elastic line of second kind on an oriented surface

Bayram, Ergin; Kasap, Emin


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/57739</identifier>
  <creators>
    <creator>
      <creatorName>Bayram, Ergin</creatorName>
      <givenName>Ergin</givenName>
      <familyName>Bayram</familyName>
      <affiliation>Ondokuz Mayis Univ, Dept Math, TR-55139 Samsun, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Kasap, Emin</creatorName>
      <givenName>Emin</givenName>
      <familyName>Kasap</familyName>
      <affiliation>Ondokuz Mayis Univ, Dept Math, TR-55139 Samsun, Turkey</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Intrinsic Equations For A Relaxed Elastic Line Of Second Kind On An Oriented Surface</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2016</publicationYear>
  <dates>
    <date dateType="Issued">2016-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/57739</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1142/S0219887816500109</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">Let alpha(s) be an arc on a connected oriented surface S in E-3, parameterized by arc length s, with torsion tau and length l. The total square torsion H of alpha is defined by H = integral(l)(0) tau(2) ds. The arc alpha is called a relaxed elastic line of second kind if it is an extremal for the variational problem of minimizing the value of H within the family of all arcs of length l on S having the same initial point and initial direction as alpha. In this study, we obtain differential equation and boundary conditions for a relaxed elastic line of second kind on an oriented surface.</description>
  </descriptions>
</resource>
32
5
görüntülenme
indirilme
Görüntülenme 32
İndirme 5
Veri hacmi 925 Bytes
Tekil görüntülenme 29
Tekil indirme 5

Alıntı yap