Dergi makalesi Açık Erişim
Bayram, Ergin; Kasap, Emin
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/57739</identifier>
<creators>
<creator>
<creatorName>Bayram, Ergin</creatorName>
<givenName>Ergin</givenName>
<familyName>Bayram</familyName>
<affiliation>Ondokuz Mayis Univ, Dept Math, TR-55139 Samsun, Turkey</affiliation>
</creator>
<creator>
<creatorName>Kasap, Emin</creatorName>
<givenName>Emin</givenName>
<familyName>Kasap</familyName>
<affiliation>Ondokuz Mayis Univ, Dept Math, TR-55139 Samsun, Turkey</affiliation>
</creator>
</creators>
<titles>
<title>Intrinsic Equations For A Relaxed Elastic Line Of Second Kind On An Oriented Surface</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2016</publicationYear>
<dates>
<date dateType="Issued">2016-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/57739</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1142/S0219887816500109</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">Let alpha(s) be an arc on a connected oriented surface S in E-3, parameterized by arc length s, with torsion tau and length l. The total square torsion H of alpha is defined by H = integral(l)(0) tau(2) ds. The arc alpha is called a relaxed elastic line of second kind if it is an extremal for the variational problem of minimizing the value of H within the family of all arcs of length l on S having the same initial point and initial direction as alpha. In this study, we obtain differential equation and boundary conditions for a relaxed elastic line of second kind on an oriented surface.</description>
</descriptions>
</resource>
| Görüntülenme | 45 |
| İndirme | 9 |
| Veri hacmi | 1.7 kB |
| Tekil görüntülenme | 41 |
| Tekil indirme | 9 |