Dergi makalesi Açık Erişim
Bayram, Ergin; Kasap, Emin
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/57739</identifier> <creators> <creator> <creatorName>Bayram, Ergin</creatorName> <givenName>Ergin</givenName> <familyName>Bayram</familyName> <affiliation>Ondokuz Mayis Univ, Dept Math, TR-55139 Samsun, Turkey</affiliation> </creator> <creator> <creatorName>Kasap, Emin</creatorName> <givenName>Emin</givenName> <familyName>Kasap</familyName> <affiliation>Ondokuz Mayis Univ, Dept Math, TR-55139 Samsun, Turkey</affiliation> </creator> </creators> <titles> <title>Intrinsic Equations For A Relaxed Elastic Line Of Second Kind On An Oriented Surface</title> </titles> <publisher>Aperta</publisher> <publicationYear>2016</publicationYear> <dates> <date dateType="Issued">2016-01-01</date> </dates> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/57739</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1142/S0219887816500109</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">Let alpha(s) be an arc on a connected oriented surface S in E-3, parameterized by arc length s, with torsion tau and length l. The total square torsion H of alpha is defined by H = integral(l)(0) tau(2) ds. The arc alpha is called a relaxed elastic line of second kind if it is an extremal for the variational problem of minimizing the value of H within the family of all arcs of length l on S having the same initial point and initial direction as alpha. In this study, we obtain differential equation and boundary conditions for a relaxed elastic line of second kind on an oriented surface.</description> </descriptions> </resource>
Görüntülenme | 32 |
İndirme | 5 |
Veri hacmi | 925 Bytes |
Tekil görüntülenme | 29 |
Tekil indirme | 5 |