Dergi makalesi Açık Erişim

Intrinsic equations for a relaxed elastic line of second kind on an oriented surface

Bayram, Ergin; Kasap, Emin


JSON

{
  "conceptrecid": "57738", 
  "created": "2021-03-16T00:21:59.483864+00:00", 
  "doi": "10.1142/S0219887816500109", 
  "files": [
    {
      "bucket": "520ba12d-2b7a-49ad-abc1-e113c844caeb", 
      "checksum": "md5:da25cb0540ae39236f28a37325373e33", 
      "key": "bib-e0487120-a255-4589-aac5-632c1c8f427c.txt", 
      "links": {
        "self": "https://aperta.ulakbim.gov.tr/api/files/520ba12d-2b7a-49ad-abc1-e113c844caeb/bib-e0487120-a255-4589-aac5-632c1c8f427c.txt"
      }, 
      "size": 185, 
      "type": "txt"
    }
  ], 
  "id": 57739, 
  "links": {
    "badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.1142/S0219887816500109.svg", 
    "bucket": "https://aperta.ulakbim.gov.tr/api/files/520ba12d-2b7a-49ad-abc1-e113c844caeb", 
    "doi": "https://doi.org/10.1142/S0219887816500109", 
    "html": "https://aperta.ulakbim.gov.tr/record/57739", 
    "latest": "https://aperta.ulakbim.gov.tr/api/records/57739", 
    "latest_html": "https://aperta.ulakbim.gov.tr/record/57739"
  }, 
  "metadata": {
    "access_right": "open", 
    "access_right_category": "success", 
    "communities": [
      {
        "id": "tubitak-destekli-proje-yayinlari"
      }
    ], 
    "creators": [
      {
        "affiliation": "Ondokuz Mayis Univ, Dept Math, TR-55139 Samsun, Turkey", 
        "name": "Bayram, Ergin"
      }, 
      {
        "affiliation": "Ondokuz Mayis Univ, Dept Math, TR-55139 Samsun, Turkey", 
        "name": "Kasap, Emin"
      }
    ], 
    "description": "Let alpha(s) be an arc on a connected oriented surface S in E-3, parameterized by arc length s, with torsion tau and length l. The total square torsion H of alpha is defined by H = integral(l)(0) tau(2) ds. The arc alpha is called a relaxed elastic line of second kind if it is an extremal for the variational problem of minimizing the value of H within the family of all arcs of length l on S having the same initial point and initial direction as alpha. In this study, we obtain differential equation and boundary conditions for a relaxed elastic line of second kind on an oriented surface.", 
    "doi": "10.1142/S0219887816500109", 
    "has_grant": false, 
    "journal": {
      "issue": "3", 
      "title": "INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS", 
      "volume": "13"
    }, 
    "license": {
      "id": "cc-by"
    }, 
    "publication_date": "2016-01-01", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "57739"
          }, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "57738"
          }
        }
      ]
    }, 
    "resource_type": {
      "subtype": "article", 
      "title": "Dergi makalesi", 
      "type": "publication"
    }, 
    "title": "Intrinsic equations for a relaxed elastic line of second kind on an oriented surface"
  }, 
  "owners": [
    1
  ], 
  "revision": 1, 
  "stats": {
    "downloads": 5.0, 
    "unique_downloads": 5.0, 
    "unique_views": 29.0, 
    "version_downloads": 5.0, 
    "version_unique_downloads": 5.0, 
    "version_unique_views": 29.0, 
    "version_views": 32.0, 
    "version_volume": 925.0, 
    "views": 32.0, 
    "volume": 925.0
  }, 
  "updated": "2021-03-16T00:21:59.542911+00:00"
}
32
5
görüntülenme
indirilme
Görüntülenme 32
İndirme 5
Veri hacmi 925 Bytes
Tekil görüntülenme 29
Tekil indirme 5

Alıntı yap