Dergi makalesi Açık Erişim

ON A LIE RING OF GENERALIZED INNER DERIVATIONS

Aydin, Neset; Turkmen, Selin


MARC21 XML

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">ON A LIE RING OF GENERALIZED INNER DERIVATIONS</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="p">COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY</subfield>
    <subfield code="v">32</subfield>
    <subfield code="n">4</subfield>
    <subfield code="c">827-833</subfield>
  </datafield>
  <controlfield tag="001">52043</controlfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">In this paper, we define a set including of all f(a) with a is an element of R generalized derivations of R and is denoted by f(R). It is proved that (i) the mapping g : L (R) -&amp;gt; f(R) given by g (a) = f(-a) for all a is an element of R is a Lie epimorphism with kernel N-sigma,N-tau; (ii) if R is a semiprime ring and sigma is an epimorphism of R, the mapping h : f(R) -&amp;gt; I (R) given by h(f(a)) = i(sigma)(-a) is a Lie epimorphism with kernel 1 (f(R)); (iii) if f(R) is a prime Lie ring and A, B are Lie ideals of R, then [f(A), f(B)] = (0) implies that either f(A) = (0) or f(B) = (0).</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="2">opendefinition.org</subfield>
    <subfield code="a">cc-by</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Canakkale Onsekiz Mart Univ, Lapseki Vocat Sch, TR-17800 Canakkale, Turkey</subfield>
    <subfield code="a">Turkmen, Selin</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="b">article</subfield>
    <subfield code="a">publication</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Canakkale Onsekiz Mart Univ, Dept Math, TR-17020 Canakkale, Turkey</subfield>
    <subfield code="a">Aydin, Neset</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-01-01</subfield>
  </datafield>
  <controlfield tag="005">20210315230441.0</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="o">oai:zenodo.org:52043</subfield>
    <subfield code="p">user-tubitak-destekli-proje-yayinlari</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="z">md5:c644d856531bd1e97aae1e84ab45b840</subfield>
    <subfield code="s">146</subfield>
    <subfield code="u">https://aperta.ulakbim.gov.trrecord/52043/files/bib-6a867bc1-4e59-4c21-9d52-68d5aa1b0b65.txt</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://www.opendefinition.org/licenses/cc-by</subfield>
    <subfield code="a">Creative Commons Attribution</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.4134/CKMS.c170019</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
</record>
32
4
görüntülenme
indirilme
Görüntülenme 32
İndirme 4
Veri hacmi 584 Bytes
Tekil görüntülenme 28
Tekil indirme 4

Alıntı yap