Dergi makalesi Açık Erişim
Aydin, Neset; Turkmen, Selin
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/52043</identifier> <creators> <creator> <creatorName>Aydin, Neset</creatorName> <givenName>Neset</givenName> <familyName>Aydin</familyName> <affiliation>Canakkale Onsekiz Mart Univ, Dept Math, TR-17020 Canakkale, Turkey</affiliation> </creator> <creator> <creatorName>Turkmen, Selin</creatorName> <givenName>Selin</givenName> <familyName>Turkmen</familyName> <affiliation>Canakkale Onsekiz Mart Univ, Lapseki Vocat Sch, TR-17800 Canakkale, Turkey</affiliation> </creator> </creators> <titles> <title>On A Lie Ring Of Generalized Inner Derivations</title> </titles> <publisher>Aperta</publisher> <publicationYear>2017</publicationYear> <dates> <date dateType="Issued">2017-01-01</date> </dates> <resourceType resourceTypeGeneral="Text">Journal article</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/52043</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.4134/CKMS.c170019</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract">In this paper, we define a set including of all f(a) with a is an element of R generalized derivations of R and is denoted by f(R). It is proved that (i) the mapping g : L (R) -&gt; f(R) given by g (a) = f(-a) for all a is an element of R is a Lie epimorphism with kernel N-sigma,N-tau; (ii) if R is a semiprime ring and sigma is an epimorphism of R, the mapping h : f(R) -&gt; I (R) given by h(f(a)) = i(sigma)(-a) is a Lie epimorphism with kernel 1 (f(R)); (iii) if f(R) is a prime Lie ring and A, B are Lie ideals of R, then [f(A), f(B)] = (0) implies that either f(A) = (0) or f(B) = (0).</description> </descriptions> </resource>
Görüntülenme | 32 |
İndirme | 4 |
Veri hacmi | 584 Bytes |
Tekil görüntülenme | 28 |
Tekil indirme | 4 |