Dergi makalesi Açık Erişim
Aydin, Neset; Turkmen, Selin
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/52043</identifier>
<creators>
<creator>
<creatorName>Aydin, Neset</creatorName>
<givenName>Neset</givenName>
<familyName>Aydin</familyName>
<affiliation>Canakkale Onsekiz Mart Univ, Dept Math, TR-17020 Canakkale, Turkey</affiliation>
</creator>
<creator>
<creatorName>Turkmen, Selin</creatorName>
<givenName>Selin</givenName>
<familyName>Turkmen</familyName>
<affiliation>Canakkale Onsekiz Mart Univ, Lapseki Vocat Sch, TR-17800 Canakkale, Turkey</affiliation>
</creator>
</creators>
<titles>
<title>On A Lie Ring Of Generalized Inner Derivations</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2017</publicationYear>
<dates>
<date dateType="Issued">2017-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/52043</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.4134/CKMS.c170019</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract">In this paper, we define a set including of all f(a) with a is an element of R generalized derivations of R and is denoted by f(R). It is proved that (i) the mapping g : L (R) -&gt; f(R) given by g (a) = f(-a) for all a is an element of R is a Lie epimorphism with kernel N-sigma,N-tau; (ii) if R is a semiprime ring and sigma is an epimorphism of R, the mapping h : f(R) -&gt; I (R) given by h(f(a)) = i(sigma)(-a) is a Lie epimorphism with kernel 1 (f(R)); (iii) if f(R) is a prime Lie ring and A, B are Lie ideals of R, then [f(A), f(B)] = (0) implies that either f(A) = (0) or f(B) = (0).</description>
</descriptions>
</resource>
| Görüntülenme | 47 |
| İndirme | 4 |
| Veri hacmi | 584 Bytes |
| Tekil görüntülenme | 41 |
| Tekil indirme | 4 |