Dergi makalesi Açık Erişim

ON A LIE RING OF GENERALIZED INNER DERIVATIONS

Aydin, Neset; Turkmen, Selin


DataCite XML

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/52043</identifier>
  <creators>
    <creator>
      <creatorName>Aydin, Neset</creatorName>
      <givenName>Neset</givenName>
      <familyName>Aydin</familyName>
      <affiliation>Canakkale Onsekiz Mart Univ, Dept Math, TR-17020 Canakkale, Turkey</affiliation>
    </creator>
    <creator>
      <creatorName>Turkmen, Selin</creatorName>
      <givenName>Selin</givenName>
      <familyName>Turkmen</familyName>
      <affiliation>Canakkale Onsekiz Mart Univ, Lapseki Vocat Sch, TR-17800 Canakkale, Turkey</affiliation>
    </creator>
  </creators>
  <titles>
    <title>On A Lie Ring Of Generalized Inner Derivations</title>
  </titles>
  <publisher>Aperta</publisher>
  <publicationYear>2017</publicationYear>
  <dates>
    <date dateType="Issued">2017-01-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/52043</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.4134/CKMS.c170019</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">In this paper, we define a set including of all f(a) with a is an element of R generalized derivations of R and is denoted by f(R). It is proved that (i) the mapping g : L (R) -&amp;gt; f(R) given by g (a) = f(-a) for all a is an element of R is a Lie epimorphism with kernel N-sigma,N-tau; (ii) if R is a semiprime ring and sigma is an epimorphism of R, the mapping h : f(R) -&amp;gt; I (R) given by h(f(a)) = i(sigma)(-a) is a Lie epimorphism with kernel 1 (f(R)); (iii) if f(R) is a prime Lie ring and A, B are Lie ideals of R, then [f(A), f(B)] = (0) implies that either f(A) = (0) or f(B) = (0).</description>
  </descriptions>
</resource>
32
4
görüntülenme
indirilme
Görüntülenme 32
İndirme 4
Veri hacmi 584 Bytes
Tekil görüntülenme 28
Tekil indirme 4

Alıntı yap