Dergi makalesi Açık Erişim

ON A LIE RING OF GENERALIZED INNER DERIVATIONS

Aydin, Neset; Turkmen, Selin


Dublin Core

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Aydin, Neset</dc:creator>
  <dc:creator>Turkmen, Selin</dc:creator>
  <dc:date>2017-01-01</dc:date>
  <dc:description>In this paper, we define a set including of all f(a) with a is an element of R generalized derivations of R and is denoted by f(R). It is proved that (i) the mapping g : L (R) -&gt; f(R) given by g (a) = f(-a) for all a is an element of R is a Lie epimorphism with kernel N-sigma,N-tau; (ii) if R is a semiprime ring and sigma is an epimorphism of R, the mapping h : f(R) -&gt; I (R) given by h(f(a)) = i(sigma)(-a) is a Lie epimorphism with kernel 1 (f(R)); (iii) if f(R) is a prime Lie ring and A, B are Lie ideals of R, then [f(A), f(B)] = (0) implies that either f(A) = (0) or f(B) = (0).</dc:description>
  <dc:identifier>https://aperta.ulakbim.gov.trrecord/52043</dc:identifier>
  <dc:identifier>oai:zenodo.org:52043</dc:identifier>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights>
  <dc:source>COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY 32(4) 827-833</dc:source>
  <dc:title>ON A LIE RING OF GENERALIZED INNER DERIVATIONS</dc:title>
  <dc:type>info:eu-repo/semantics/article</dc:type>
  <dc:type>publication-article</dc:type>
</oai_dc:dc>
32
4
görüntülenme
indirilme
Görüntülenme 32
İndirme 4
Veri hacmi 584 Bytes
Tekil görüntülenme 28
Tekil indirme 4

Alıntı yap