Dergi makalesi Açık Erişim
Aydin, Neset; Turkmen, Selin
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Aydin, Neset</dc:creator> <dc:creator>Turkmen, Selin</dc:creator> <dc:date>2017-01-01</dc:date> <dc:description>In this paper, we define a set including of all f(a) with a is an element of R generalized derivations of R and is denoted by f(R). It is proved that (i) the mapping g : L (R) -> f(R) given by g (a) = f(-a) for all a is an element of R is a Lie epimorphism with kernel N-sigma,N-tau; (ii) if R is a semiprime ring and sigma is an epimorphism of R, the mapping h : f(R) -> I (R) given by h(f(a)) = i(sigma)(-a) is a Lie epimorphism with kernel 1 (f(R)); (iii) if f(R) is a prime Lie ring and A, B are Lie ideals of R, then [f(A), f(B)] = (0) implies that either f(A) = (0) or f(B) = (0).</dc:description> <dc:identifier>https://aperta.ulakbim.gov.trrecord/52043</dc:identifier> <dc:identifier>oai:zenodo.org:52043</dc:identifier> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>http://www.opendefinition.org/licenses/cc-by</dc:rights> <dc:source>COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY 32(4) 827-833</dc:source> <dc:title>ON A LIE RING OF GENERALIZED INNER DERIVATIONS</dc:title> <dc:type>info:eu-repo/semantics/article</dc:type> <dc:type>publication-article</dc:type> </oai_dc:dc>
Görüntülenme | 32 |
İndirme | 4 |
Veri hacmi | 584 Bytes |
Tekil görüntülenme | 28 |
Tekil indirme | 4 |