Dergi makalesi Açık Erişim
Kizilay, Elif; Arslan, Berat; Verim, Burcu; Demirlek, Cemal; Demir, Muhammed; Cesim, Ezgi; Eyuboglu, Merve Sumeyye; Ozbek, Simge Uzman; Sut, Ekin; Yalincetin, Berna; Bora, Emre
{
"@context": "https://schema.org/",
"@id": 276221,
"@type": "ScholarlyArticle",
"creator": [
{
"@type": "Person",
"affiliation": "Dokuz Eylul Univ, Hlth Sci Inst, Dept Neurosci, Izmir, Turkiye",
"name": "Kizilay, Elif"
},
{
"@type": "Person",
"affiliation": "Dokuz Eylul Univ, Hlth Sci Inst, Dept Neurosci, Izmir, Turkiye",
"name": "Arslan, Berat"
},
{
"@type": "Person",
"affiliation": "Dokuz Eylul Univ, Hlth Sci Inst, Dept Neurosci, Izmir, Turkiye",
"name": "Verim, Burcu"
},
{
"@type": "Person",
"name": "Demirlek, Cemal"
},
{
"@type": "Person",
"affiliation": "Dokuz Eylul Univ, Hlth Sci Inst, Dept Neurosci, Izmir, Turkiye",
"name": "Demir, Muhammed"
},
{
"@type": "Person",
"affiliation": "Dokuz Eylul Univ, Hlth Sci Inst, Dept Neurosci, Izmir, Turkiye",
"name": "Cesim, Ezgi"
},
{
"@type": "Person",
"affiliation": "Dokuz Eylul Univ, Hlth Sci Inst, Dept Neurosci, Izmir, Turkiye",
"name": "Eyuboglu, Merve Sumeyye"
},
{
"@type": "Person",
"affiliation": "Dokuz Eylul Univ, Fac Med, Dept Psychiat, Izmir, Turkiye",
"name": "Ozbek, Simge Uzman"
},
{
"@type": "Person",
"affiliation": "Dokuz Eylul Univ, Fac Med, Dept Child & Adolescent Psychiat, Izmir, Turkiye",
"name": "Sut, Ekin"
},
{
"@type": "Person",
"affiliation": "Dokuz Eylul Univ, Hlth Sci Inst, Dept Neurosci, Izmir, Turkiye",
"name": "Yalincetin, Berna"
},
{
"@type": "Person",
"name": "Bora, Emre"
}
],
"datePublished": "2024-01-01",
"description": "<p>Identifying individuals at clinical high risk for psychosis (CHR-P) - P) is crucial for preventing psychosis and improving the prognosis for schizophrenia. Individuals at CHR-P may exhibit mild forms of formal thought disorder (FTD), making it possible to identify them using natural language processing (NLP) methods. In this study, speech samples of 62 CHR-P individuals and 45 healthy controls (HCs) were elicited using Thematic Apperception Test images. The evaluation involved various NLP measures such as semantic similarity, generic, and part-of-speech (POS) features. The CHR-P group demonstrated higher sentence-level semantic similarity and reduced mean image-to-text similarity. Regarding generic analysis, they demonstrated reduced verbosity and produced shorter sentences with shorter words. The POS analysis revealed a decrease in the utilization of adverbs, conjunctions, and first-person singular pronouns, alongside an increase in the utilization of adjectives in the CHR-P group compared to HC. In addition, we developed a machine-learning model based on 30 NLP-derived features to distinguish between the CHR-P and HC groups. The model demonstrated an accuracy of 79.6 % and an AUC-ROC of 0.86. Overall, these findings suggest that automated language analysis of speech could provide valuable information for characterizing FTD during the clinical high-risk phase and has the potential to be applied objectively for early intervention for psychosis.</p>",
"headline": "Automated linguistic analysis in youth at clinical high risk for psychosis",
"identifier": 276221,
"image": "https://aperta.ulakbim.gov.tr/static/img/logo/aperta_logo_with_icon.svg",
"license": "http://www.opendefinition.org/licenses/cc-by",
"name": "Automated linguistic analysis in youth at clinical high risk for psychosis",
"url": "https://aperta.ulakbim.gov.tr/record/276221"
}
| Görüntülenme | 0 |
| İndirme | 0 |
| Veri hacmi | 0 Bytes |
| Tekil görüntülenme | 0 |
| Tekil indirme | 0 |