Dergi makalesi Açık Erişim
Kizilay, Elif; Arslan, Berat; Verim, Burcu; Demirlek, Cemal; Demir, Muhammed; Cesim, Ezgi; Eyuboglu, Merve Sumeyye; Ozbek, Simge Uzman; Sut, Ekin; Yalincetin, Berna; Bora, Emre
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
<identifier identifierType="URL">https://aperta.ulakbim.gov.tr/record/276221</identifier>
<creators>
<creator>
<creatorName>Kizilay, Elif</creatorName>
<givenName>Elif</givenName>
<familyName>Kizilay</familyName>
<affiliation>Dokuz Eylul Univ, Hlth Sci Inst, Dept Neurosci, Izmir, Turkiye</affiliation>
</creator>
<creator>
<creatorName>Arslan, Berat</creatorName>
<givenName>Berat</givenName>
<familyName>Arslan</familyName>
<affiliation>Dokuz Eylul Univ, Hlth Sci Inst, Dept Neurosci, Izmir, Turkiye</affiliation>
</creator>
<creator>
<creatorName>Verim, Burcu</creatorName>
<givenName>Burcu</givenName>
<familyName>Verim</familyName>
<affiliation>Dokuz Eylul Univ, Hlth Sci Inst, Dept Neurosci, Izmir, Turkiye</affiliation>
</creator>
<creator>
<creatorName>Demirlek, Cemal</creatorName>
<givenName>Cemal</givenName>
<familyName>Demirlek</familyName>
</creator>
<creator>
<creatorName>Demir, Muhammed</creatorName>
<givenName>Muhammed</givenName>
<familyName>Demir</familyName>
<affiliation>Dokuz Eylul Univ, Hlth Sci Inst, Dept Neurosci, Izmir, Turkiye</affiliation>
</creator>
<creator>
<creatorName>Cesim, Ezgi</creatorName>
<givenName>Ezgi</givenName>
<familyName>Cesim</familyName>
<affiliation>Dokuz Eylul Univ, Hlth Sci Inst, Dept Neurosci, Izmir, Turkiye</affiliation>
</creator>
<creator>
<creatorName>Eyuboglu, Merve Sumeyye</creatorName>
<givenName>Merve Sumeyye</givenName>
<familyName>Eyuboglu</familyName>
<affiliation>Dokuz Eylul Univ, Hlth Sci Inst, Dept Neurosci, Izmir, Turkiye</affiliation>
</creator>
<creator>
<creatorName>Ozbek, Simge Uzman</creatorName>
<givenName>Simge Uzman</givenName>
<familyName>Ozbek</familyName>
<affiliation>Dokuz Eylul Univ, Fac Med, Dept Psychiat, Izmir, Turkiye</affiliation>
</creator>
<creator>
<creatorName>Sut, Ekin</creatorName>
<givenName>Ekin</givenName>
<familyName>Sut</familyName>
<affiliation>Dokuz Eylul Univ, Fac Med, Dept Child & Adolescent Psychiat, Izmir, Turkiye</affiliation>
</creator>
<creator>
<creatorName>Yalincetin, Berna</creatorName>
<givenName>Berna</givenName>
<familyName>Yalincetin</familyName>
<affiliation>Dokuz Eylul Univ, Hlth Sci Inst, Dept Neurosci, Izmir, Turkiye</affiliation>
</creator>
<creator>
<creatorName>Bora, Emre</creatorName>
<givenName>Emre</givenName>
<familyName>Bora</familyName>
</creator>
</creators>
<titles>
<title>Automated Linguistic Analysis In Youth At Clinical High Risk For Psychosis</title>
</titles>
<publisher>Aperta</publisher>
<publicationYear>2024</publicationYear>
<dates>
<date dateType="Issued">2024-01-01</date>
</dates>
<resourceType resourceTypeGeneral="Text">Journal article</resourceType>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://aperta.ulakbim.gov.tr/record/276221</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.schres.20249.009</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="http://www.opendefinition.org/licenses/cc-by">Creative Commons Attribution</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract"><p>Identifying individuals at clinical high risk for psychosis (CHR-P) - P) is crucial for preventing psychosis and improving the prognosis for schizophrenia. Individuals at CHR-P may exhibit mild forms of formal thought disorder (FTD), making it possible to identify them using natural language processing (NLP) methods. In this study, speech samples of 62 CHR-P individuals and 45 healthy controls (HCs) were elicited using Thematic Apperception Test images. The evaluation involved various NLP measures such as semantic similarity, generic, and part-of-speech (POS) features. The CHR-P group demonstrated higher sentence-level semantic similarity and reduced mean image-to-text similarity. Regarding generic analysis, they demonstrated reduced verbosity and produced shorter sentences with shorter words. The POS analysis revealed a decrease in the utilization of adverbs, conjunctions, and first-person singular pronouns, alongside an increase in the utilization of adjectives in the CHR-P group compared to HC. In addition, we developed a machine-learning model based on 30 NLP-derived features to distinguish between the CHR-P and HC groups. The model demonstrated an accuracy of 79.6 % and an AUC-ROC of 0.86. Overall, these findings suggest that automated language analysis of speech could provide valuable information for characterizing FTD during the clinical high-risk phase and has the potential to be applied objectively for early intervention for psychosis.</p></description>
</descriptions>
</resource>
| Görüntülenme | 0 |
| İndirme | 0 |
| Veri hacmi | 0 Bytes |
| Tekil görüntülenme | 0 |
| Tekil indirme | 0 |