Dergi makalesi Açık Erişim

Automated linguistic analysis in youth at clinical high risk for psychosis

Kizilay, Elif; Arslan, Berat; Verim, Burcu; Demirlek, Cemal; Demir, Muhammed; Cesim, Ezgi; Eyuboglu, Merve Sumeyye; Ozbek, Simge Uzman; Sut, Ekin; Yalincetin, Berna; Bora, Emre


JSON

{
  "conceptrecid": "276220", 
  "created": "2025-04-17T13:44:17.569204+00:00", 
  "doi": "10.1016/j.schres.20249.009", 
  "files": [
    {
      "bucket": "19d0320f-7fc5-4e20-942c-f05243f5ed05", 
      "checksum": "md5:87f5fdf4fa65cac44fb09a6ebbf085ff", 
      "key": "bib-fedf5866-33a9-4d86-873e-4dc124958d68.txt", 
      "links": {
        "self": "https://aperta.ulakbim.gov.tr/api/files/19d0320f-7fc5-4e20-942c-f05243f5ed05/bib-fedf5866-33a9-4d86-873e-4dc124958d68.txt"
      }, 
      "size": 259, 
      "type": "txt"
    }
  ], 
  "id": 276221, 
  "links": {
    "badge": "https://aperta.ulakbim.gov.tr/badge/doi/10.1016/j.schres.20249.009.svg", 
    "bucket": "https://aperta.ulakbim.gov.tr/api/files/19d0320f-7fc5-4e20-942c-f05243f5ed05", 
    "doi": "https://doi.org/10.1016/j.schres.20249.009", 
    "html": "https://aperta.ulakbim.gov.tr/record/276221", 
    "latest": "https://aperta.ulakbim.gov.tr/api/records/276221", 
    "latest_html": "https://aperta.ulakbim.gov.tr/record/276221"
  }, 
  "metadata": {
    "access_right": "open", 
    "access_right_category": "success", 
    "communities": [
      {
        "id": "tubitak-destekli-proje-yayinlari"
      }
    ], 
    "creators": [
      {
        "affiliation": "Dokuz Eylul Univ, Hlth Sci Inst, Dept Neurosci, Izmir, Turkiye", 
        "name": "Kizilay, Elif"
      }, 
      {
        "affiliation": "Dokuz Eylul Univ, Hlth Sci Inst, Dept Neurosci, Izmir, Turkiye", 
        "name": "Arslan, Berat"
      }, 
      {
        "affiliation": "Dokuz Eylul Univ, Hlth Sci Inst, Dept Neurosci, Izmir, Turkiye", 
        "name": "Verim, Burcu"
      }, 
      {
        "name": "Demirlek, Cemal"
      }, 
      {
        "affiliation": "Dokuz Eylul Univ, Hlth Sci Inst, Dept Neurosci, Izmir, Turkiye", 
        "name": "Demir, Muhammed"
      }, 
      {
        "affiliation": "Dokuz Eylul Univ, Hlth Sci Inst, Dept Neurosci, Izmir, Turkiye", 
        "name": "Cesim, Ezgi"
      }, 
      {
        "affiliation": "Dokuz Eylul Univ, Hlth Sci Inst, Dept Neurosci, Izmir, Turkiye", 
        "name": "Eyuboglu, Merve Sumeyye"
      }, 
      {
        "affiliation": "Dokuz Eylul Univ, Fac Med, Dept Psychiat, Izmir, Turkiye", 
        "name": "Ozbek, Simge Uzman"
      }, 
      {
        "affiliation": "Dokuz Eylul Univ, Fac Med, Dept Child & Adolescent Psychiat, Izmir, Turkiye", 
        "name": "Sut, Ekin"
      }, 
      {
        "affiliation": "Dokuz Eylul Univ, Hlth Sci Inst, Dept Neurosci, Izmir, Turkiye", 
        "name": "Yalincetin, Berna"
      }, 
      {
        "name": "Bora, Emre"
      }
    ], 
    "description": "<p>Identifying individuals at clinical high risk for psychosis (CHR-P) - P) is crucial for preventing psychosis and improving the prognosis for schizophrenia. Individuals at CHR-P may exhibit mild forms of formal thought disorder (FTD), making it possible to identify them using natural language processing (NLP) methods. In this study, speech samples of 62 CHR-P individuals and 45 healthy controls (HCs) were elicited using Thematic Apperception Test images. The evaluation involved various NLP measures such as semantic similarity, generic, and part-of-speech (POS) features. The CHR-P group demonstrated higher sentence-level semantic similarity and reduced mean image-to-text similarity. Regarding generic analysis, they demonstrated reduced verbosity and produced shorter sentences with shorter words. The POS analysis revealed a decrease in the utilization of adverbs, conjunctions, and first-person singular pronouns, alongside an increase in the utilization of adjectives in the CHR-P group compared to HC. In addition, we developed a machine-learning model based on 30 NLP-derived features to distinguish between the CHR-P and HC groups. The model demonstrated an accuracy of 79.6 % and an AUC-ROC of 0.86. Overall, these findings suggest that automated language analysis of speech could provide valuable information for characterizing FTD during the clinical high-risk phase and has the potential to be applied objectively for early intervention for psychosis.</p>", 
    "doi": "10.1016/j.schres.20249.009", 
    "has_grant": false, 
    "journal": {
      "pages": "8", 
      "title": "SCHIZOPHRENIA RESEARCH", 
      "volume": "274"
    }, 
    "license": {
      "id": "cc-by"
    }, 
    "publication_date": "2024-01-01", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "276221"
          }, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "276220"
          }
        }
      ]
    }, 
    "resource_type": {
      "subtype": "article", 
      "title": "Dergi makalesi", 
      "type": "publication"
    }, 
    "science_branches": [
      "Di\u011fer"
    ], 
    "title": "Automated linguistic analysis in youth at clinical high risk for psychosis"
  }, 
  "owners": [
    1
  ], 
  "revision": 1, 
  "stats": {
    "downloads": 0.0, 
    "unique_downloads": 0.0, 
    "unique_views": 0.0, 
    "version_downloads": 0.0, 
    "version_unique_downloads": 0.0, 
    "version_unique_views": 0.0, 
    "version_views": 0.0, 
    "version_volume": 0.0, 
    "views": 0.0, 
    "volume": 0.0
  }, 
  "updated": "2025-04-17T13:44:17.608393+00:00"
}
0
0
görüntülenme
indirilme
Görüntülenme 0
İndirme 0
Veri hacmi 0 Bytes
Tekil görüntülenme 0
Tekil indirme 0

Alıntı yap