Dergi makalesi Açık Erişim
<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
<leader>00000nam##2200000uu#4500</leader>
<datafield tag="909" ind1="C" ind2="O">
<subfield code="o">oai:aperta.ulakbim.gov.tr:274157</subfield>
</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a"><p>Stock price prediction remains a complex challenge in financial markets. This study introduces a novel Long Short-Term Memory (LSTM) model optimized by Sand Cat Swarm Optimization (SCSO) for stock price prediction. The research evaluates multiple algorithms including ANN, LSTM variants, Auto-ARIMA, Gradient Boosted Trees, DeepAR, N-BEATS, N-HITS, and the proposed LSTM-SCSO using DAX index data from 2018 to 2023. Model performance was assessed through Mean Squared Error, Mean Absolute Error, Mean Absolute Percentage Error, and out-of-sample R2 metrics. Statistical significance was validated using Model Confidence Set analysis with 5000 bootstrap replications. Results demonstrate LSTM-SCSO&#39;s superior performance across all evaluation metrics. The model achieved an annualized return of 66.25% compared to the DAX index&#39;s 47.45%, with a Sharpe ratio of 2.9091. The integration of technical indicators and macroeconomic variables enhanced the model&#39;s predictive capabilities. These findings establish LSTM-SCSO as an effective tool for stock price prediction, offering practical value for investment decision-making.</p></subfield>
</datafield>
<datafield tag="980" ind1=" " ind2=" ">
<subfield code="a">publication</subfield>
<subfield code="b">article</subfield>
</datafield>
<datafield tag="540" ind1=" " ind2=" ">
<subfield code="a">Creative Commons Attribution-NoDerivatives</subfield>
<subfield code="u">https://creativecommons.org/licenses/by-nd/4.0/</subfield>
</datafield>
<datafield tag="100" ind1=" " ind2=" ">
<subfield code="0">(orcid)0000-0002-6870-6558</subfield>
<subfield code="a">Gülmez, Burak</subfield>
<subfield code="u">Mudanya University</subfield>
</datafield>
<datafield tag="856" ind1="4" ind2=" ">
<subfield code="z">md5:55ddbc947a4ccd0e9499d3f575d032cf</subfield>
<subfield code="s">924805</subfield>
<subfield code="u">https://aperta.ulakbim.gov.trrecord/274157/files/1-s2.0-S221484502400156X-main.pdf</subfield>
</datafield>
<controlfield tag="005">20241230133021.0</controlfield>
<datafield tag="260" ind1=" " ind2=" ">
<subfield code="c">2024-12-19</subfield>
</datafield>
<datafield tag="024" ind1=" " ind2=" ">
<subfield code="a">10.1016/j.bir.2024.12.002</subfield>
<subfield code="2">doi</subfield>
</datafield>
<datafield tag="542" ind1=" " ind2=" ">
<subfield code="l">open</subfield>
</datafield>
<datafield tag="245" ind1=" " ind2=" ">
<subfield code="a">Stock price prediction using the Sand Cat Swarm Optimization and an improved deep Long Short Term Memory network</subfield>
</datafield>
<datafield tag="909" ind1="C" ind2="4">
<subfield code="p">Borsa Istanbul Review</subfield>
</datafield>
<datafield tag="650" ind1="1" ind2="7">
<subfield code="a">cc-by</subfield>
<subfield code="2">opendefinition.org</subfield>
</datafield>
<controlfield tag="001">274157</controlfield>
</record>
| Görüntülenme | 804 |
| İndirme | 42 |
| Veri hacmi | 38.8 MB |
| Tekil görüntülenme | 547 |
| Tekil indirme | 40 |