Dergi makalesi Açık Erişim

Stock price prediction using the Sand Cat Swarm Optimization and an improved deep Long Short Term Memory network

Gülmez, Burak


MARC21 XML

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Stock price prediction using the Sand Cat Swarm Optimization and an improved deep Long Short Term Memory network</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="p">Borsa Istanbul Review</subfield>
  </datafield>
  <controlfield tag="001">274157</controlfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Stock price prediction remains a complex challenge in financial markets. This study introduces a novel Long Short-Term Memory (LSTM) model optimized by Sand Cat Swarm Optimization (SCSO) for stock price prediction. The research evaluates multiple algorithms including ANN, LSTM variants, Auto-ARIMA, Gradient Boosted Trees, DeepAR, N-BEATS, N-HITS, and the proposed LSTM-SCSO using DAX index data from 2018 to 2023. Model performance was assessed through Mean Squared Error, Mean Absolute Error, Mean Absolute Percentage Error, and out-of-sample R2 metrics. Statistical significance was validated using Model Confidence Set analysis with 5000 bootstrap replications. Results demonstrate LSTM-SCSO&amp;#39;s superior performance across all evaluation metrics. The model achieved an annualized return of 66.25% compared to the DAX index&amp;#39;s 47.45%, with a Sharpe ratio of 2.9091. The integration of technical indicators and macroeconomic variables enhanced the model&amp;#39;s predictive capabilities. These findings establish LSTM-SCSO as an effective tool for stock price prediction, offering practical value for investment decision-making.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="2">opendefinition.org</subfield>
    <subfield code="a">cc-by</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="b">article</subfield>
    <subfield code="a">publication</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="0">(orcid)0000-0002-6870-6558</subfield>
    <subfield code="u">Mudanya University</subfield>
    <subfield code="a">Gülmez, Burak</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2024-12-19</subfield>
  </datafield>
  <controlfield tag="005">20241230133021.0</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="o">oai:aperta.ulakbim.gov.tr:274157</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="z">md5:55ddbc947a4ccd0e9499d3f575d032cf</subfield>
    <subfield code="s">924805</subfield>
    <subfield code="u">https://aperta.ulakbim.gov.trrecord/274157/files/1-s2.0-S221484502400156X-main.pdf</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by-nd/4.0/</subfield>
    <subfield code="a">Creative Commons Attribution-NoDerivatives</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1016/j.bir.2024.12.002</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
</record>
787
24
görüntülenme
indirilme
Görüntülenme 787
İndirme 24
Veri hacmi 22.2 MB
Tekil görüntülenme 530
Tekil indirme 23

Alıntı yap